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1 Executive Summary

In the US alone there have been 42Mn cases of COVID-19 and 674k deaths since the outbreak of the pandemic

Vaccines have been established as the best mitigation mechanism to reduce the risks of the virus — 10-fold

effectiveness for symptom reduction and 29-fold reduction in likelihood of hospitalizationl

~45%2 of the adult US population (147Mn) is still unvaccinated — the most prevalent reasons being side effect
concerns, skepticism of its effectiveness and disbelief of its need

Having a sizable share of the population unvaccinated carries three negative consequences — Increased
humanitarian health risk, global economic slowdown, and monetary cost disbursements for health insurers

At an average financial cost of hospitalization of $21k, studies3 indicate that the US is paying >$1Bn per month in
hospitalizations of unvaccinated Medicare patients alone

In order to increase the vaccination intake, most efforts? focus on three mechanisms — Increasing vaccination
access, boosting vaccination demand, and overcoming practice-related barriers

Humana has partnered with Mays Business School to explore alternatives to boost the vaccination intake through
an analytics case competition. Our suggested solution consists of a 5-step framework with the objective to increase
the vaccine demand by quantifying the benefit of potential interventions and finding an optimal assignment:

Quantify individual cost of risk - cost for Humana in case of hospitalization

Characterize potential interventions - cost and effectiveness of some possible actions Humana can take
Estimate the hesitancy of vaccination - degree to which a Humana member does not want the vaccine
Optimize intervention assignment - assignment of actions to members based on the previous metrics
Adjust for fairness - control final outreach policy to control for hidden biases

vnRwnNeE

Following this framework we have created a cost-effective prioritized list of pairs member-intervention and we
suggest doing a first touchpoint sending a digital reminder to 3% of Humana members and providing an
educational newsletter to 97% and a second touch point to 62% of Humana members with a phone call, 2% with
medical discount, 28% with cash disbursement and not intervening for 8%

We have sized the potential impact for Humana in ~19Mn USD in case of roll-out for the unvaccinated members
under study — Since data from March has been used and much has changed since then, in order to make the results
of this study actionable, the prioritization would need to be re-computed with up-to-date data that reflected the
present rates of vaccination

1 https://www.cnbc.com/2021/08/24/cdc-study-shows-unvaccinated-people-are-29-times-more-likely-to-be-hospitalized-with-
covid.html

2 https://www.washingtonpost.com/nation/2021/09/28/covid-delta-variant-live-updates/

3 https://www.usnews.com/news/health-news/articles/2021-09-10/average-covid-hospitalization-is-150-times-more-
expensive-than-vaccination

4 https://www.amjmed.com/article/50002-9343(08)00466-X/pdf
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2 Our approach to solve the vaccination problem

Vaccination is a practice with a long-standing history. Historians date it back to as early as 1000 CE when the Chinese
employed smallpox inoculation setting up the basis for the future innovations from Edward Jenner who in 1796 used
cowpox to create immunity to smallpox. Despite the scientific and historical evidence that vaccines are the gold-
standard to mitigate the risks of diseases, as seen with Smallpox, the Plague, and the Yellow Fever to name a few,

they have always suffered from detractors who question their efficacy®. Nowadays it is estimated that immunization

efforts prevent 2-3 million deaths per year® worldwide.

In the context of vaccine roll-out for the recent COVID-19 pandemic, we observe that a significant share of the US
population was vaccinated in the early stages, but the pace has slowed down, projections estimate that it will take
until mid-2022 to reach 90% vaccination rate among the US population. These differences in vaccine intake are
uneven by state as can be observed in exhibit 2-1.

EXHIBIT 2-17
Based on the seven-day average of people receiving a first or single dose each day
100% of the total U.S. population 90°
At current pace ‘ 102"
64% Penezs
. 200 oment This is equal to those 12 and

older. Children under 12 are
not yet eligible.

shecial agreements

Double clicking on the population that remains unvaccinated we can unveil that there are major discrepancies both
in terms of socio demographic characteristics as well as causes. White citizens seem to be more averse to vaccination
than blacks for instance. In terms of the causes, side effects and trust are the main concerns of the public. Exhibit 2-
2 illustrates the discrepancies in vaccine intake both in terms of groups as well as causes.

EXHIBIT 2-28

Who are the unvaccinated, Why people remain unvaccinated,
Waltand see  Definitely not

18-29 Side effects 53
Age 129 I
a6 Waiting to see if safe I
Race Black Don't trust vaccines I
ispanic
White Don't trust government | Eg
Part Demacrat bl |
y Qomecrat Don't believe | need it | E3
High school of less Other 16
Education  Hioh scheolo |
College degree or more Think other peapie need it more [l 11
income e tan e et s B
>$90k
Doctor has not recammanded |7
Community Urban
Suburban Concermed about cast B

Rural

5 https://www.historyofvaccines.org/timeline/all
6 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4514191/#R3

7 https://www.nytimes.com/interactive/2020/us/covid-19-vaccine-doses.html?auth=login-email&login=email

8 https://www.nytimes.com/2021/07/31/us/virus-unvaccinated-americans.html
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Having the historical frame, context of the existing vaccination problematic and implications for a leading health
insurer in mind, we proceed to explain our approach to fast-track the targeted vaccination outreach. In order to
calculate the most cost-effective vaccination outreach policy, we have defined a set of potential interventions and
calculated the individual benefit of each intervention for every Humana member. Our goal is to identify the pairs of
intervention-member that yield the highest benefit for Humana as seen in exhibit 2-3.

Humana member  Intervention Benefit of the intervention . Chosen intervention
~~ Digital reminder -0,01%
' / .
\7’ Educational newsletter -0,05% No intervention
Phene call -10%
Discount - 308
P Digital reminder +1%
() Phone call
N Educational newsletter +6§ from
e
' Phone call +108 healthcare
rovider
Discount -5% P
- Digital reminder +3$
\_ Educational newsletter +0§ Eis(:;:;\unl in
= ealthcare
4 3 Phone call +18% plan
Discount +65%

‘ Detail next on the computation of the benefit of the intervention ‘

More specifically, for every Humana member we compute the benefit of every potential interventions as:

EXHIBIT 2-4
Benefit of Costin case of Increase of probability X Hesitancy to get ( P ility of . P ility of ) . Costof - Benefit of the
intervention hospitalizati X of ination due to vaccinated X hospitalization if hy italization if intervention = intervention
formula intervention not vaccinated vaccinated
Computation ) -
oxampie forons | $30,000 20% x 83% x( 1% - 02% ) - $20 = $19.84
pair of member -
intervention

Where the previous terms stand for...

= Cost in case of hospitalization: Monetary value in case of hospitalization. It is calculated as an outside-in
estimate, for some members like elderly or with existing preconditions it will be higher than for younger
and healthier individuals

= |Increase of probability of vaccination due to intervention: Effect of the intervention in decreasing the
hesitancy to get vaccinated. A Humana member might respond very positively to a discount while not to an
SMS. These values are estimated with an outside-in study where we analyze which interventions have
worked best in the past

= Hesitancy to get vaccinated: Value which reflects (1 — probability to get vaccinated). It is calculated
analytically from the proprietary Humana data and the historical member characteristics

= Probability hospitalization if not vaccinated — probability hospitalization if vaccinated: Difference in the
probability of hospitalization thanks to getting the vaccine

= Cost of intervention: Monetary cost of the individual intervention

Having the previous values will allow us to create a grid with all the possible combinations of intervention-member
and decide which intervention we would like to assign in a structured and analytical way.



we have structured our study as depicted in exhibit 2-5 with a 5-step framework.

EXHIBIT 2-5

Quantify individual cost
of risk for every Humana
member

Gather metrics that represent an
economic burden for Humana as a
consequence of having unvaccinated
members

Estimate the risks and associated
likelihoods of the events that can be
attributed to the health insurer
Consolidate in a single unit for each
Humana member the expected
monetary disbursement by the health

Determine and
characterize potential
interventions

Itemize all potential and feasible
interventions to be deployed in a
targeted way to the Humana members

Specify the individual cost of each
intervention

Determine the risk saved as a
percentage increase in the probability
of getting vaccinated

Estimate the hesitancy
of vaccination with
Advanced Analytics

Create a set of potentially explanatory
features of the “hesitancy to
wvaccination” condition

Build an analytics model that relates
the variables with the target response

Analyze the results to validate the
business sense and directionality of the
model developed

Rank-score the entire Humana
population with their associated

Optimize intervention
assignment in the best
cost-effective way

Rank order the entire unvaccinated
Humana population based on benefit in
case of intervention (individual cost of
risk * benefit of intervention *
probability of vaccination)

Find optimal break-even point where
additional expenditures will not yield
profitable returns in terms of risk
captured

Once we have defined the goal of our approach, that is, compute the benefit of every intervention for every member,

Adjust outreach policy
to control for fairness

Analyze both the analytics model and
final suggestion to unveil potential
hidden biases

Control for undesirable treatments
arising from outweighing some
population over another

Adapt the final intervention plan to
account for the previous controls on
fairness

insurer
probability of being hesitant to get a
vaccine

Key outputs of each phase

¢ Single indicator for every Humana * Listofp ial inter i . dv d lytics model that *  Break-even point calculated ¢ Adjusted list of Humana
member representing the with the description of each relates member variables with *  List of unvaccinated Humana members to be intervened
monetary cost of risk — Expected s Characterization of the likelihood to be hesitant members that are suggested accounting for fairness factors

disbursement by the health
insurer for each particular
individual

to be intervened in a
profitable way

interventions specifying relative %
of probability of vaccination
increase and cost of intervention

Scoring of the entire Humana
pepulation under analysis with
the degree of hesitancy to get a
vaccine

CHAPTER 3 CHAPTER 4 CHAPTER 5 CHAPTER 6 CHAPTER 6

Following this framework, we will be able to quantify the monetary benefit of every potential intervention to each
Humana member. The formula in exhibit 4 describes how we reach this final computation.

As noted in exhibit 2-5, the following chapters will cover the main steps sequentially. Chapter 3 is dedicated to
studying the cost of risk, chapter 4 to analyzing potential interventions and chapter 5 to develop the probability of
vaccination model.

Finally, once these ingredients are in hand, we will proceed with the intervention assignment in chapter 6. Before
going any further, we stress some key benefits of the previously defined framework:

o Targeted outreach: This framework provides member-level recommendations
Precise quantification of the hesitancy to vaccinate Thanks to the creation of an analytics model, we are
able to quantitatively estimate the hesitancy to vaccinate of every member

o Accountability for the individual effect of interventions: The members with highest hesitancy to vaccinate
may not be the optimal to be reached out — based on predisposition to embrace the intervention, this
framework accounts for the individual effect of interventions at a member level

o Monetary association of the actions: Quantifying all the factors in terms of probabilities of certain
outcomes and monetary cost allows to operate with them and retrieve a dollar figure for the benefit of
each intervention for each Humana member

o Profitability assessment: Once all the data is collected and the previous indicators created, this framework
benefits from calculating the exact breakeven point where it is no longer profitable to intervene — all the
decisions are driven by their profitability rather than a qualitative assessment

o Flexibility to incorporate additional mitigating actions: If in the future additional potential interventions
are devised, they can easily be incorporated to the existing problem and reweight the final decisions

o Flexibility to change expected costs in case of economic changes: Similar to the previous one, the
framework can be iterated and refined with no additional efforts changing the parameters of the actions

An exhaustive list with assumptions and potential enhancements to this framework can be found in the appendix.



3 Quantifying the cost of risk of not being
vaccinated

In this third chapter and throughout the entirety of this study we define cost of risk as the expected monetary
disbursement a health insurer might incur in case of hospitalization. Although cost of risk is not an explicit metric in
the competition’s description, we believe that any attempt to recommend a policy concerning members with
heterogeneous conditions and latent risks should account for risk discrepancies. The basic motivation behind the
use of such an indicator is that it is not the same to successfully distribute 100 vaccines to healthy and
immunologically strong individuals than administering 100 to a group of at-risk individuals. Since there is no tailored-
to-Humana data regarding cost of hospitalization at our disposal, we have estimated the cost of risk as a function of
some key covariates from Humana members and an outside-in study of reported costs. Exhibit 3-1 depicts the
followed procedure.

EXHIBIT 3-1

Identify Humana variables that can cluster Gather reported monetary costs in case of Create a mapping tree that associates

the members by health risk hospitalization for the different clusters each

Analyze all the variables provided by Humana  Research reported expenditures associated Create a tree mapping that associates the cost
and select a comprehensive set that captures  with hospitalizations of risk at a population level to each leaf -
different costs of risk combination of different Humana attributes

Map the costs found in the outside-in study
Study how many Humana members fall in with the different Humana covarlates chosen

each category in the first step
o000
®

With this approach, we have found external studies? and cost breakdowns0 that are summarized in exhibit 3-2.

Table 3. COVID-19-Related Medical Costs per Outpatient Visit and per Hospitalization, by Patient Demographic
Characteristics®
Characeristic Outpatient Visits Hospializationst
(n=2844298) Ly 268706)  Excluding Death or Ventilator (n = Death (n = 49 602)¢
Ventilator (n = 21 6063t

213340)

37
92 a4 171 13

s 6 15 9
466 849 888 5844843520 3938 161 152 1068212226 1588 007 856
164 21752 18460 944 2015
9 16254 15593 4176 20924
166{157-175) 2391622208 53441(50 674 42475 (40 129-44 821)
56 608)
7584y 168(156-179 2 5 7361 (43 643 32 613 (29 302-35 924)
23) st

(1642

sa5y 157(143:172) 18637
20849

22794 (18 847-26 740)

Female {reference 160{150-170) 20536019192 2975328 183-31 326)

21879
Male 169 (156-182 2301921302 3383931 42-36 251)

161{152-169)
164(129-179)

186(160.212

183(149:217)

39 130(36 50241 759)

2114174.248; 38921 (35 487-42 355)

196 (184.208)

156(131-182)

9 https://www.cbsnews.com/news/covid-vaccination-health-insurance-cost-treatment/
10 https://www.acpjournals.org/doi/10.7326/M21-1102#t3-M211102
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Next, we have curated the tree in exhibit 3-3. This tree allows us to group members with similar risk covariates and
assign a monetary expected cost of hospitalization. That is, in case of hospitalization of a 70-year-old male, the
average cost associated with the hospitalization is of $25.152 for example.

EXHIBIT 3-3
% Humana  Outside-in
members cost of risk
in data estimation

<65 years old

S 75-84 years old

5,64% $19.664

. . =85 years old
Entire population

<65 years old $20.470

65-74 years old 19,94%

$20.470

75-84 years old 14,47%

HoeY 6600
pOeO 0e0E

>85 years old 4,02% $17.604

Although it might initially seem counterintuitive that older patients have lower cost of risk, this is due to the fact
that the cost associated with hospitalization is heavily correlated with the time spent at a hospital and the older
population has a higher concentration of deceased individuals making their stay potentially shorter.

As discussed in the appendix, a potential enhancement of our approach would be to fine-tune these figures to the
realities observed in Humana in particular. Moreover, an analytics model could be built to estimate this expected
cost of hospitalization at the individual level instead of assigning group averages from the market.



4 Determining potential interventions to enhance
vaccination

In this fourth chapter we explore different potential interventions that could help enhance the vaccination intake.
While the rest of our effort — quantifying the different dimensions of the intervention benefit formula — is a
guantitative task, in order to have real-world actionability, the appropriate interventions need to be chosen which
is somewhat more qualitative. A first glimpse at vaccination rates by country allows us to understand potential
interventions in those countries where the intake has had more historical success. In exhibit 4-1 we can observe
these discrepancies by country.

EXHIBIT 4-111

W Share of peaple fully vaccinated against COVID-19 [l Share of peaple only partly vaccinated against COVID-19

Uitiec At it BN 1
ey &

Nonetheless, country specific circumstances might make these policies not applicable to the US, focusing on past
success histories in the US, an exhaustive study named Practice-Proven Interventions to Increase Vaccination Rates

and Broaden the Immunization Season?? breaks down the strategies to increase coverage in three categories:

EXHIBIT 4-2

e '
Focus of our study |

Block of action Intervention [ ol st L

R Extend office hours Facilitate transportation
Increase vaccine access

Vaccinate at all visit types Vaccinate at alternative sites

Express-lane vaccination service

i '
i Increase vaccine demand Clinic-based patient education Monetary incentives H
:

: '
h Community-wide education Discourage of not being vaccinate i
i '
: '
, Patient reminder/recall system Deny access to certain sites without a vaccine
S H

Overcome practice-related barriers Standing orders Provider education and recommendation
Provider reminders/recall Add vaccination to quality care

Feedback for vaccination provider

Non exhaustive list of intervention iated with the blocks of action

1 https://ourworldindata.org/covid-vaccinations
12 https://www.amjmed.com/article/S0002-9343(08)00466-X/pdf
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This dichotomy of the alternatives into three blocks is very illustrative — namely increasing vaccination access,
increasing the demand, or overcoming practice related barriers. The focus of our study is on the second one, i.e.
increasing the demand. Within the second category — increasing the demand, the CDC13 outlines the following 6
potential cases as causes of lack of demand

e Limited access to health care

e  Multiple competing priorities for providers who care for adult patients

e Low awareness among adults about recommended vaccines and their benefits

e Challenges in coordinating care for adults who often have more than one medical provider
e A complicated adult immunization schedule

e Vaccine cost and reimbursement

In the context of COVID 19, we will focus on stimulating the third one, which stands for low awareness and resistance
to the vaccine or hesitancy — the scope of this study. Because of their success in some demonstrated studies4 and
their potential in others, we have focused on the “Missed opportunity vaccination intervention guidebook from the
World Health Organization”1> where a comprehensive list of considerations to be made before selecting which
interventions to pursue is outlined.

We have defined five types of targeted interventions where in each of them the Humana member would receive
information reminding: (1) Urgency: They are yet to be vaccinated — (2) Price: The vaccine is free of charge — (3)
Logistics: Location and opening hours of the closest vaccination clinic to their residence. These five interventions are
assigned in a two-step process, first assigning the optimal first touch point for the client (digital reminder or
newsletter) and then decide if it is profitable to assign a second step intervention being — phone call, discount and
cash disbursement

= Digital reminder: Recall based on the digital channel preference for every member (SMS, email, intranet...)
conduct a targeted Humana member reach out

= Newsletter education: Send a non-intrusive newsletter through the preferred digital channel of every
Humana member highlighting the benefits of the vaccine and dangers of not being vaccinated

=  Healthcare provider phone call: Interact through a call highlighting the need and logistics of the vaccination

= Discount in healthcare plan1®: Notify eligibility for a monetary incentive in case of vaccination. A recent
study at UCLA indicated that a third of the unvaccinated population would make them more likely to get a
shot

= Cash disbursement: For some Humana members, release a message notifying that they are eligible for a
direct cash disbursement and not necessarily associated with a discount in the healthcare plan

13 https://www.cdc.gov/vaccines/pubs/pinkbook/strat.html
14 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4514191/table/T2/?report=objectonly

15 https://www.who.int/immunization/programmes_systems/policies strategies/MOQOV_Intervention Guidebook.pdf

16 https://www.nytimes.com/2021/05/04/upshot/vaccine-incentive-experiment.html
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In order to be able to compute the exact benefit of these interventions at a member level, we have estimated the
parameters from exhibit 4-3 which characterize the interventions from a cost and effectiveness standpoint. This

estimation comes from “Strategies for addressing vaccine hesitancy”1” from the World Health Organization

EXHIBIT 4-3
Intervention Cost, $ per intervention Effectiveness, % hesitancy reduction
Digital reminder 7 B < 30 years old
0,01 5 . 40 - 70 years old
. > 70 years old
First 3
touchpoint Educational newsletter 6
0,02
Phone call from healthcare provider
18
Second Discount in healthcare plan 36 M <40k hhincome
touchpoint 40-80k hh income
50,00 30
>80k hh income
24
Cash disbursement _
50,00 30
18

Outside-in estimation that could be refined with more granular data from Humana'’s specific context

In the appendix section we discuss how this approximation could be fine-tuned to reflect the realities of Humana
members and even fine-grained so that every member gets an individualized cost and effectiveness estimate.
Although our study mainly focuses on how to best allocate resources to conduct a targeted response — that is,
identifying which members will better respond to which interventions — some group-wide interventions deserve to
be considered such as:

- Run avaccine lottery

- Establish partnerships with pharmacies / businesses to give immediate discounts
- Location speeches

- Commercial awareness

The decision to conduct a group-wide intervention — partnership with employers, conferences... - could be fueled
with the indicators we are creating in this study, but it is outside the scope of the present body of work, in the
appendix section we discuss about it with more detail.

17
https://www.who.int/immunization/sage/meetings/2014/october/3 SAGE WG Strategies addressing vaccine hesitancy 2
014.pdf

10
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5 Estimating the hesitancy of vaccination

The focus of the fifth chapter is to present an in-depth step-by-step approach to the solution followed to estimate
the likelihood of not being vaccinated (defined in this context as hesitancy). It is structured as a sequence of
subchapters beginning with the data gathering and consolidation process to later discuss the definition of the
population and target variable. Once all the preliminary ingredients are ready, we study the algorithm developed
together with the interpretation of its results and the fairness consequences. Following the framework discussed in
chapter 2, this section is dedicated to study the shaded step in exhibit 5-1.

EXHIBIT 5-1

Gather metrics that represent an
‘economic burden for Humana as a
consequence of having unvaccinated
members

Estimate the risks and associated
likelihoods of the events that can be
attributed to the health insurer
Consolidate in a single nit for each
Humana member the expected
monetary disbursement by the health
insurer

Itemize all potential and feasible
interventions to be deployed in a
targeted way to the Humana members

Specify the individual cost of each

Intervention

Determine the risk saved a5 a
percentage increase in the probability
of getting vaccinated

Estimate the hesitancy
of vaccination with
Advanced Analytics

Create a set of potentially explanatory
features of the “hesitancy

Rank order the entire unvaccinated

vaccination” condition

Build an analytics model that relates
the variables with the target response

Analyze the results to validate the
business sense and directionality of the
model developed

Rank-score the entire Humana
population with their associated
probability of being hesitant to get a
vaccine

PopI
case of intervention (individual cost of
risk * benefit of intervention *
probability of vaccination)

Find optimal bresk-even point where
additional expenditures will not yield
profitable returns in terms of risk
captured

based on benefit in

Analyze both the analytics model and
final suggestion to unveil potential
hidden biases

Control for undesirable treatments
arising from outwelghing some
population over another

Adapt the final intervention plan to
account for the previous controls on
fairness

Key outputs of each phase

*  Ssingle indicator for every Humana . st *  Advanced

i i that . point calculated *  Adjusted list of Humana
member reprasenting the with the description of each relates member variables with + ' lish st awaceloated Homana members to be intervened
monetary cost of risk — Expected +  Charactarization of the likelihood to be hesitant members thet are suggested accounting for faimess factors
disbursement by the health interventions specifying relative % *  Scoring of the entire Humana to be intervened in a
insurer for each particular of probability of vaccination population under analysis with profitable way
individual increase and cost of intervention the degree of hesitancy to get a
vaccine
CHAPTER 3 CHAPTER 4 CHAPTER CHAPTER 6 CHAPTER 6

Additionally, this fifth chapter builds some necessary intuition around the problem and analytics solution developed
and extracts key insights that will be crucial to derive the implications for Humana discussed in chapter 6. Illustration
5-2 depicts the steps followed to bridge from the raw data to the unbiased likelihood of hesitancy estimates.

EXHIBIT 5-2

Steps 1-5 are sequential while
© cleanse raw Humanadata 61 B are ferate, e resut
of each influences the new
iteration

Gather all the raw sources
provided by Humana and
standardize their format,
eliminate null values.

O _create

Extract explanatory variables from
the raw and external data sources
that potentially describe the
probability of being vaccinated

€ Define the perimeter of analysis y variables (© _Analyze the target variable

Identify which units - Humana
members — will be under the
scope of analysis and
modelled

Combined
data model

Define, analyze and relate the target
variable - being vaccinated — with other
covariates to check for business sense
and create descriptive intuition around
the problem at hand

€ Download external sources

Identify and download external
data with potential use for the

project f Target
‘ f Data Member®D Feat1  Feath Tt
( f / checked
© Evaluate model fairmess «—— @ study the results of the model «—— O Dpeveiop analytics model

Compute key metrics for fairness and
biases both at the model and data level
to build trustworthiness around the
solution developed

Understand main drivers of the model,
gocdness of fit and decision boundary of
the developed model

Develop Advanced Analytics model to
predict likelinood to be vaccinated
leveraging the target and variables
created earlier

Eg= ool ol
cls Eok %6 %G

As one can note, the steps until the master table consolidation are sequential but the last refinements involve

iterations since the results of the model will in part influence its posterior recalibrations to account for fairness,
biases, and goodness of fit.
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5.1 HUMANA'’S DATA OVERVIEW

The first step in any analytics study consists of analyzing the available data, its content and format. From the raw
data provided by Humana, we observe that there are 1.5Mn unique members, 974k of whom have the vaccination

information available.

EXHIBIT 5-3

Humana members in the raw data

Humana members in raw data

For this 1.5Mn Humana members, we have at our disposal 367 raw variables from 11 different data blocks.

1.500.000

525.158
974.842

Members with no vaccination information Members with vaccination information

breakdown of raw variables per data block is depicted in exhibit 5-4.

EXHIBIT 5-4

Data sources

# Raw variables

Example of variables included

= Employment level = Adult diabetes rate
General geographic data 90 = Child food insecurity = Poverty rate
. Acute admits related with diabetes . Malignant neoplasms
Authorizations in the last period 84 o X o ‘
. Nervous system admits in last period . Acute hernias in last period
= Cost per month related to prescriptions = Contraceptives in the last month
Prescriptions = Cost of generic drugs = Maintenance drugs in the last period
X . Copay cost of behavioral claims . Admitted days per month for claims
Claims o ,
. Bone marrow claims in last month . Allowed cost per claims
®  Geo unit quality score *  Median househald income
Census data 20
= Median home value *  Student loan index
. = Balance auto bank loans ®  Number of consumer finance accounts
Credit 15
®  Number of mortgages *  Overdue amount
. = Health behavior *  Residential health segregation
Health condition 14
= Sacial economic health factors = Average daily density of pollution
. L] e - Race
Demographics 8 Ae
L] Gender . Preferred language
= Original reason entry Medicare = CMS payment amount
CMS data 4 € Y pay
. Risk adjustment factor . Risk adjustment amount
" *  Unigue alpha numeric identifier of each Humana member
Identifier 1
. Indicator of whether the Humana member has been vaccinated or not
Target 1
Total

The

Our goal in this chapter will be to find patterns between these rich data sources and the flag of vaccination for the
974k members and then evaluate whether we have a sufficiently strong evidence to generalize for the remainder of
the 1.5Mn population. As one can note, these rich sources will allow for a broader prediction, i.e. not limited to
health data or patient’s history but also containing other more diverse attributes.

12




5.2 EXTERNAL DATA UTILIZED

In addition to the raw sources provided by Humana and detailed in the previous subsection, we have collected
external and publicly available information that covers different dimensions and enriches the upcoming analyses.
Namely, the additional data sources leveraged are the following:

- Vaccination hesitancy surveys from healthdata.org18: This weekly data at the zip code level offers a rich
view of which geographies are more hesitant to be vaccinated. A sample in each US zip code is surveyed
with the following two questions:

o Yes, probably will and no probably won’t respondents
o Yes, probably will, no probably won’t, and no definitely won’t respondents

We use this data as a structural screenshot in time to allow the model to rank-order geographies based on
the degree to which people are hesitant in them. Exhibit 5-5 illustrates the raw format of this data source.

EXHIBIT 5-5
week start_date end_date zip_code vaccine_measure_id final_zip_pred state_name county_name wvaccine_measure_name definition
-pe- _pe- yes probably will and
g 202108 202105 49001 1 0026815  NewYork  NewYorkCounty  high vaccine potential o probably wont
respond...
yes probably will and
34 202 1'02‘0“0' 2021'02‘% 10002 1 0.039312 New York New York County high_vaccine_potential no probably wont
respond...
-na- -0e- yes probably will and
3¢ 20205 202105 40003 1 0010740  NewYork  NewYorkCounty  high vaccine_potential no probably wont
respond...
_pe- _pe- yes probably will and
3 2021 0280 2021 0285 10004 1 0.027380 New York New York County high_vaccine_potential no probably wont
respond...
-08- _pe- yes probably will and
g 202108 202108 40005 1 0018103  NewYork  NewYorkCounty  high vaccine potenial no probably wont
respond...

- Zip code structural data from uszipcodel9: Additionally to the geographic data provided from Humana, we
have leveraged a public API to retrieve zip code specific characteristics. These characteristics contain
complementary data such as housing units, occupied housing units, population density, water area... which
can add value in the upcoming prediction task. The raw format of this data can be found in exhibit 5-6 and
in the future references on the synthetic variables utilized for the prediction task.

EXHIBIT 5-6
zipcode major_city latitude longitude zipcode_radius zipcode_population zipcode_popultaion_density zipcode_land_area zipcode_water_area_in_sgmi
46201 Indianapolis ~ 39.78 -86.11 2.000000 30962.0 5542.0 5.59 0.00
28701  Alexander 35.70 -82.64 5.000000 3635.0 204.0 17.86 0.48
70001 Metairie  29.98 -90.16 3.000000 37996.0 6330.0 6.00 0.00
53901 Portage  43.50 -89.50 12.000000 14445.0 102.0 141.96 9.26
602 Aguada 18.36 -67.18 4.000000 41520.0 1356.0 3061 172

18 https://vaccine-hesitancy.healthdata.org/ and http://www.healthdata.org/acting-data/covid-19-vaccine-hesitancy-us-
county-and-zip-code

19 https://github.com/MacHu-GWU/uszipcode-project
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5.3 PERIMETER OF ANALYSIS — HUMANA MEMBERS ANALYZED

Once all the data has been gathered, cleansed, and consolidated, the immediate next step consists of defining the
perimeter of analysis or population. In our study this perimeter has already been outlined by the Humana organizing
team already, namely the 1.5Mn members who were in a Medicare advantage plan20 and eligible to get vaccinated
in March 2021. With this definition we first observe the traits that characterize this population in exhibit 5-7.

EXHIBIT 5-7
@) D [<
O (| R
A |
Age distribution, % Gender, % Race, %
<30yearsold |0,6
White 83,4
30-39 ,
Male 46,2 Black | 88
40-49
50-59 Hispanic 1,5
60-69 Asian 1,1
70-79
Native N American |0,2
80-89
Female 53,8
Other 1,3
90-99
100 Unknown 3,8

While the gender distribution appears to be balanced, both the race and age are skewed. We can see that the age
distribution of the 1.5Mn Humana members is skewed to the older side with an average age of 71 years old. Similarly,
83% of all the members under analysis are white.

Analyzing the data at the zip code level, we can see how the 1.5Mn of members in our perimeter of analysis are
distributed across the US. Exhibit 5-8 illustrates that there are some zip codes with high concentration of Humana
members and taking it to the country level we see some “hot spots” that concentrate higher counts than others.

EXHIBIT 5-8
o P
fn‘g # of Humana members in most frequent codes e Population distribution in all zip codes

46201 - Indiana

28701 - Alexander, NC

46101 - Moody County, South Dakota

70001 - Jefferson Parish, Louisiana

53101 - Bassett, Wisconsin

70101 - Costa Rica

53901 - Columbia County, Wisconsin

20 https://www.medicare.gov/sign-up-change-plans/types-of-medicare-health-plans/medicare-advantage-plans
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5.4 EXPLANATORY VARIABLES

The next step in the model development phase consists of extracting explanatory variables at the member level
which can be later utilized by the advanced analytics model. For each of the variables in every data source, we have
proceeded doing the following:

1. Variable cleansing:

o Renaming: Based on the definitions provided by Humana all the raw variables have been renamed
for the ease of comprehension throughout the study

o Filling null values: Most variables have different reasons of nullable values, we have carried out
contextual imputation, i.e. in some cases filling by 0, others by the mean and others by the mode
depending on the context of the variable at hand and the potential reason for it being null

o Assigning the correct variable type: In order to have homogeneity across variables, all have been
converted to the type “float64”, this unveiled that some variables had unexpected values like “*”
or text within a numeric variable and we controlled to solve these issues. The analytics model will
ingest a table only filled with numeric values

o Label encoding of categorical values: Similar to the previous step, all categorical variables have
been mapped to numeric values, when the ordering between them may have sense it has been
preserved and otherwise it is let as a label encoded feature and we specify to the algorithm which

are categorical features?1

o Fill missing zip code information: For some of the external data we were not able to map to the
exact zip code, we have followed a proximity approach assigning the external data of the closest
zip code available

2. Combine with other variables to create synthetic indicators:

o Direct explanatory features: These consist of the already cleansed variables with no changes
Zip code aggregations: Average of other variables (income, health risk...) by code of the member
Zip code discrepancies: Discrepancy between the variables (income) and the average of code
Age quotients: Division of some indicators against age — loans, health risk, # admissions...

O O O O

Count of categorical variables: Count encoding for the categorical variables, # appearances

After these 3 steps and extracting several additional features that might be relevant for the modelling process, we
have a resulting master data table that consists of 627 explanatory variables. These can be classified into 12 blocks
as depicted in exhibit 5-9.

EXHIBIT 5-9

# of explanatory variables by data block

271

20 84 70
37
23 15 14 9 8 4 5
Synthetic General Authorizations Prescriptions Claims Census Credit Health Zip data Demographics CMS External
features geographic data

data

21 https://lightgbm.readthedocs.io/en/latest/Features.html#toptimal-split-for-categorical-features
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Once we have cleansed and created a comprehensively exhaustive set of explanatory variables, a necessary sanity
check consists of validating their disparity between training and testing data. Since our ultimate goal throughout this
chapteris to find patterns between the covariates and the hesitancy response that generalizes to the test set (unseen
labels), it is fundamental that the test set is similarly distributed to the train data. We have first analyzed the decile
distribution of each of the 627 variables to validate that their range is consistent with their description as can be
seen for some variables in exhibit 5-10.

EXHIBIT 5-10

Variable Decilel Decile2 Decile3 Decile4 Decile5 Decile6 Decile7 Decile8 Decile9
atlas_agritrsm_rct12 79000,00 141000,00 210699,42 210699,42 210699,42
atlas_avghhsize 351 2,55 2,59 2,64
atlas_berry_acrespth12 0,08 0,16 0,21 0,21
atlas_berry_farms12 4,00 6,00 8,00 10,00
atlas_convspth14 0,40 0,45 0,49 0,55

atlas_csal2 2,00 3,00 3,00 4,00
atlas_deep_pov_all 6,31 6,87 758 7,69
atlas_deep_pov_children 8,04 9,09 9,90 10,72
atlas_dirsales_farms12 35,00 42,00 49,00 61,00

atlas_farm_to_school13
atlas_ffrpth14

atlas_fmrktpth16

atlas_foodhub16
atlas_foodinsec_13_15
atlas_foodinsec_child_03_11
atlas_freshveg_farms12
atlas_fsrpth14
atlas_ghveg_farms12
atlas_ghveg_sqftpth12
atlas_grocpth14
atlas_hh65plusalonepct
atlas_hiamenity

atlas_hipov_1115
atlas_low_education_2015_update
atlas_low_employment_2015_update

atlas_medhhinc 46239,00 49277,00 51549,00 54053,00 56855,00
atlas_naturalchangerate1016 0,60 1,19 1,73 2,31 3,04
atlas_net_international_migration_rate 0,36 0,48 0,66 1,01
atlas_netmigrationrate1016 - -0,01 0,91 1,82 3,19
atlas_orchard_acrespth12 0,31 0,54 0,80 1,25
atlas_orchard_farms12 9,00 11,00 15,00 19,00
atlas_ownhomepct 68,67 70,57 72,16 73,77
atlas_pc_dirsales12 1,38 2,30 3,30 4,24
atlas_pc_ffrsales12 567,30 608,73 622,68 642,49 649,09
atlas_pc_fsrsales12 623,59 642,78 649,84 688,25 690,52
atlas_pc_snapben15 13,93 15,75 17,46 18,64 20,34
atlas_pc_wic_redemp12 15,00 16,81 18,44 18,52 20,44
atlas_pct_cacfp15 1,10 1,13 1,24 1,33 1,39
atlas_pct_diabetes_adults13 9,80 10,30 10,80 11,40 12,10
atlas_pct_fmrkt_anmlprod16 50,00 50,00 55,98 62,63 70,00
atlas_pct_fmrkt_baked16 50,00 58,18 60,32 66,67 75,00
atlas_pct_fmrkt_credit16 33,33 49,88 50,00 60,00 70,00
atlas_pct_fmrkt_frvegl6 52,00 62,58 64,67 72,23 81,15
atlas_pct_fmrkt_otherfood16 50,00 55,01 57,72 66,67 75,00
atlas_pct_fmrkt_sfmnp16 4,04 17,32
atlas_pct_fmrkt_snap16 21,19 28,17

atlas_pct_fmrkt_wic16 13,67
atlas_pct_fmrkt_wiccash16

Next, and in order to check for structural differences between train and test sets, we have taken the differences of
the deciles of each variable between train and test. High values in these would yield a difference not only at an
average level but at a distribution level, this has served us to further cleanse the variables, exhibit 5-11 depicts an
example of how the distribution of the difference looks like for some of the variables.

EXHIBIT 5-11
Var Decilel Decile2 Decile3 Decile4 Decile5 Decile6 Decile7 Decile8 Decile9
atlas_avghhsize
atlas_berry_acrespth12
atlas_berry_farms12
atlas_convspth14
atlas_csal2
atlas_deep_pov_children 0,00 0,00

atlas_dirsales_farms12
atlas_farm_to_school13
atlas_ffrpth14
atlas_fmrktpth16
atlas_foodhub16
atlas_foodinsec_13_15
atlas_foodinsec_child_03_11
atlas_freshveg_farms12
atlas_fsrpth14
atlas_ghveg_farms12
atlas_ghveg_sqftpth12
atlas_grocpth14
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5.5 TARGET VARIABLE DEFINITION — HESITANCY OF VACCINATION INDICATOR

The target response is the variable that we want to learn patterns from and extract predictions for the hold out test.
As discussed earlier, our focus will be in estimating the likelihood of being hesitant to get a vaccine and with this
purpose the data facilitated from Humana already has this flag at the member level. For every member in the
Humana population provided we know if they got the vaccine or not.

While this prediction should be performed in a rolling window basis, i.e. utilize the last batch of N months available
data to see if the individual gets a vaccine in the next M months, in the context of this competition we only have at
our disposal static data from a particular point in time.

Once the target for the advanced analytics model has been defined, namely the flag of hesitancy, we can cross relate
it with other covariates to test its business sense. The following exhibits try to assess and illustrate its adequacy.
From exhibit 5-12 we can observe that Humana members with certain demographic characteristics show different
rates of hesitancy to vaccinate. For instance, the older the member the less hesitant it is to vaccinate.

EXHIBIT 5-12
Q O [=
[N N
I'A 1}
a4l 1 T
Age distribution, Gender, Race,
% hesitancy % hesitancy % hesitancy
< 30 years old 93,0
Unknown 90,5
30-39 93,9
Male 83,4 Hispanic 88,5
40-49 93,3
50-59 91,9 Black 88,1
60-69 85,1 Native N American 87,8
70-79 80,7
Asian 83,4
80-89 71,9
’ Female 81,9
Other 82,1
90-99 76,8
+100 758 White 816

Additionally, the rate of hesitancy to vaccinate is not homogeneous across regions of the US. We can observe the
contrast of hesitancy to vaccinate by state and observe that there are some with very varying levels of vaccination
penetration.

EXHIBIT 5-13

Example of zip codes with varying level of Hesitancy distribution,
hesitancy, % of hesitancy @ % vaccination by zip code

45201 - Cincinnati, Ohio
Average vaccination penetration by region

90005 - Los Angeles, California

56056 - Watonwan County, Minnesota

% of vaccinated Humana members.
o
100159100.1058)

70469 - Parish, Louisiana

010581001675

. . 016751002228)

55012 - Chisago County, Minnesota 1022281003380)
1033810 1.000)

37363 - Ooltewah, Tennessee

78026 - Texas
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Interestingly, there are some variables that descriptively display a relation with the hesitancy of vaccination. At this
point we cannot yet assess neither the predictive power nor the causality between them, but checking the individual
relations builds a better understanding of the problem at hand.

For instance, we can observe that the reason of entry to the Medicare system displays some disparities across
groups. Similarly, the higher the percentage of adults without health insurance in the area where the member resides
yields higher levels of hesitancy. Interestingly, the higher the net worth of the Humana member, the lower the
hesitancy to get a vaccine.

EXHIBIT 5-14
Percentage of adults under age
65 without health insurance in
Medicare reason of entry, the area of the member, Net worth buckets,
% hesitancy in group % hesitancy in group % hesitancy in group
Decile 1 - (-0.001, 0.0713] 77,9
; -2500.001, 0.0] 86,7
Old Age Survivors Insurance (OASI) 80,3 Decile 2 - (0.0713, 0.0814] 78,4 (
Decile 3 - (0.0814, 0.0917] 79,6
(0.0, 7500.0] 86,2
Decile 4 - (0.0917, 0.111] 81,5
Disabled 88,2
Decile 5 - (0.111, 0.134] 84,4
(7500.0, 100000.0] 82,7
Decile 6 - (0.134, 0.148] 84,3
End Stage Renal Disease (ESRD) 90,5 Decile 7 - (0.148, 0.164] 84,2
(100000.0, 218750.0] 79,8
Decile 8 - (0.164, 0.18] 84,1
Decile 9 - (0.18, 0.209] 85,3
Both 91,3 (218750.0, 1000000.0] 76,9
Decile 10 - (0.209, 0.434] 86,3

While we could do this exercise for all the variables that show a slight resemblance with the response target, we will
not analyze the individual descriptive relations and contributions until after the model development in the
immediate next section. The reason behind this choice is that the model will autonomously point us towards those
indicators that display such a noteworthy relation with the hesitancy response.
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5.6 ADVANCED ANALYTICS MODEL DEVELOPMENT

Once the population has been defined, the explanatory variables extracted and the target variable analyzed, we are
ready to begin with the model development phase. Because of its flexibility, predictive power, ease of use and
explainability we have mainly focused on tree-based boosting algorithms to estimate the probability of vaccination.
More precisely, after trying different extreme gradient boosting frameworks, we have selected LightGBM’s22 native
implementation because of the results obtained. Although we will not expand on how this family of algorithms work,
exhibit 5-15 portrays the basic idea behind its steps.

EXHIBIT 5-15

Data Set: (X, Y)

F(X) Fy(X) Fo(X)

Tree 1 Tree 2 Tree m.

Compute J Compute 4 Compute mmpuh Compute a,

Residuals Residuals Residuals Residuals
() (rz) (ri) (Tm)

| l l |
}

Fr(X) = Fpt(X) + a b (X, 1),
where a;, and 7; are the regt i and residuals with the i** tree respectiully, and h;

is a function that is trained to predict residuals, 7; using X for the ith tree. To compute ; we use the residuals
m

computed, r; and compute the following: arg min = 3 L(¥;, F; 1(X;) + ohy(Xi, i 1)) where
=

i=1
L(Y, F(X)) is a differentiable loss function.

There are three considerations that need to be made before beginning the modeling phase:

= Metric of interest: In this case the metric of interest is area under the receiver operating characteristic23
as specified by the organization of the case competition. Defining this metric allows us to discriminate
between models based on which one performs best in a given metric

= Parameter fine-tuning: This step consists of finding a set of parameters that in some sense maximizes the
previously defined metric. To choose an adequate set of parameters we have executed a Bayesian

Optimization algorithm?24 to find a locally maximizing set in a 5-fold cross validation framework

= Train-validation-test split: Once the metric of interest and parameters have been defined, the
train/validation/test split needs to be established. This has more relevance in time-dependent problems
than in our static setup. We have proceeded with a 5-fold cross validation framework to produce out of
sample predictions for the entirety of the population at hand and the test sets for the public leaderboard

22 https://github.com/microsoft/LightGBM

23 https://en.wikipedia.org/wiki/Receiver operating characteristic

24 hips://github.com/fmfn/BayesianOptimization
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Before delving into the result analysis, we will illustrate two of the three design dimensions previously explained, we
won’t deep dive on the metric of interest since it is already prescribed by the competition organizers and there is no
room to maneuver. The train / validation / test schema followed can be observed in the following exhibit.

EXHIBIT 5-16
1. Descriptive analyses 2. Model development phase 3. Final model training
Cleansing process, feature creation and 5-fold cross validation to find best suiting set Train final model with previously found
descriptive analyses of parameters to be utilized in the next stage parameters and predict the unseen data

5 models trained with 80% of the data each, out
Master table with 627 explanatory variables Set of Lightgbm parameters that maximizes of sample predictions for the train set and
created both for the train and test datasets the average cross-fold AUC averaged ensembled predictions for the test set

And regarding the choice of parameters, as described earlier, we have executed a Bayesian Optimization search of
parameters to maximize the 5-fold cross validation average of the AUC. That is, we have split the training the data
in 5 equally sized groups, initiated 20 random sets of parameters and then performed a Bayesian search of 5 steps
from the previous results (based on the relation from the parameters and the AUC found earlier the Bayesian steps
to new parameter space are different). With this procedure we obtain 25 combinations of parameters — AUC with
one of them maximizing it as can be seen below. The first row being the finally chosen parameters.

EXHIBIT 5-17
g 0 actio ambda ambda dep g ga ave

0,9286 0,2211 2,5744 2,7055 6,9236 40,9941 0,0265 39,7328

0,9094 0,3069 0,8732 1,0821 6,8224 22,5085 0,0477 44,0648

0,9412 0,2973 1,2800 0,0720 6,2834 18,5196 0,0644 24,6662

0,8773 0,1678 2,8100 1,9442 13,6051 13,5159 0,0955 16,7707
0,6784 0,8291 0,5114 2,6383 0,9157 7,0758 31,8610 0,0113 32,0390
0,6764 0,8801 0,5361 3,2096 1,4209 12,3265 31,5178 0,0320 37,7406
0,6762 0,8144 0,5067 2,6029 2,8051 14,5742 44,5679 0,0073 39,7840
0,6762 0,9714 0,4812 4,3157 1,9827 12,1565 40,9907 0,0322 16,1626
0,6760 0,9956 0,5816 4,1765 0,2561 11,3478 45,5141 0,0918 21,5065
0,6757 0,9177 0,5332 1,2138 0,8804 13,8319 20,8340 0,0333 33,9449
0,6756 0,9423 0,7037 0,3986 0,0462 7,1902 6,7356 0,0701 31,9446
0,6753 0,9276 0,4946 2,4589 2,3885 15,4257 9,3921 0,0296 20,0991
0,6752 0,9055 0,6810 4,3230 2,8077 8,6657 42,3061 0,0786 19,2576
0,6750 0,8007 0,5893 1,7269 1,4364 17,7778 13,7748 0,0331 44,3028
0,6747 0,9714 0,6568 2,7651 2,8057 11,6641 12,9925 0,0541 23,8038
0,6745 0,8550 0,5853 2,0581 1,1063 17,4146 5,2342 0,0956 15,9803
0,6744 0,9760 0,7270 1,2624 2,7813 10,7818 21,9718 0,0895 37,6216
0,6743 0,9757 0,6381 0,0344 0,1133 14,4615 34,1437 0,0545 23,9371
0,6737 0,9617 0,7368 1,3996 1,3663 10,1694 47,9044 0,0356 16,7828
0,6733 0,9549 0,8032 2,4074 0,9087 10,7581 28,7660 0,0612 30,7573
0,6731 0,8021 0,8070 3,2821 2,8268 14,6843 17,0245 0,0368 30,7921
0,6730 0,8671 0,8418 1,4522 0,1415 9,4920 25,8249 0,0518 20,5584
0,6728 0,8371 0,8338 1,3546 0,8206 17,4074 10,7202 0,0750 15,1571
0,6726 0,8227 0,8796 3,6437 1,0544 14,1989 40,9822 0,0649 27,4380
0,6722 0,9758 0,8854 0,1235 1,2147 16,3063 19,7048 0,0861 25,2199
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5.7 RESULT ANALYSIS

In this subsection we will delve into the results obtained from the modelling effort. These consist of 4 key indicators
that allow us to understand the quality and nature of our model — goodness of fit, score calibration, feature
contributions, and uplift. While only the final results are displayed in this document, these metrics serve as the basis
to select from one model to another in the development phase that was conducted before reaching the final model
here presented.

1. Goodness of fit: The first result analysis to carry out is the goodness of fit check —i.e. how faithful are the
model predictions with the underlying true labels. In the following exhibit one can observe the two main
metrics of interest — AUC and disparity score — for the different sets of data that we have access to. While
the training performance allows us to estimate whether patterns are found successfully, the other serve
as guardrails to check if indeed these patterns are held in unseen data.

EXHIBIT 5-18
Il 2uc M Disparity score
Out of fold training performance | Test performance
Training set of members of Humana for whom we know the vaccination indicator — predictions are made in Held-out set which is used in the
an out of fold fashion with a 5-fold cross validation schema leaderboard of the competition
| 99,10
68,15 68,37 68,48 68,22 68,07 67,50
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Test

5': - d ‘" o Can’t be computed since
/ ' L the true labels are not at

LI = R e our disposal

Additionally, we can double click on certain populations of interest to see how well our predictions are to
group-specific individuals. In exhibit 5-19 we can observe the goodness of fit for the two variables of
interest, gender, and race.

EXHIBIT 5-19
Goodness of fit by class, AUC

Male
Gender Female
................ r.‘ame Amwi;;..
Race Black

Hispanic

White

Asian
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2. Score calibration: While in some classification use-cases a rank-ordering of the members might suffice,
since we are utilizing the model scores as true odds of hesitancy to later be used as probabilities in the
benefit formula, they should be aligned with the true odds coming from the data. That is, if we binarize the
scoring distribution from the train data, we should see similar target averages. We analyze this behavior in
the following exhibit to conclude that the scores as-are are well enough calibrated and no further
modifications like isotropic regression need to be made.

EXHIBIT 5-20

Decile of model probability Avg model probability % Hesitant population

Decile 1 - (0.164-0.702]

Decile 2 - (0.702-0.748] 72,65% 72,67%
Decile 3 - (0.748- 0.781] 76,48% 76,24%
Decile 4 - (0.781-0.809] 79,50% 79,13%
Decile 5 - (0.809-0.835] 82,20% 81,75%
Decile 6 - (0.835-0.861] 84,78% 84,35%
Decile 7 - (0.861-0.886] 87,34% 87,13%
Decile 8 -(0.886-0.913] 89,95% 89,98%
Decile 9 - (0.913-0.941] 92,66% 92,80%
Decile 10 - (0.941- 0.998]

3. Feature contributions: There are several ways we can use to assess the strength with which a boosting
model relies on a particular feature. During the model development (to engineer new features) and in the

final model understanding, we have focused on 4 — cover, gain, sum of SHAP25 values and sum of absolute
SHAP values. Separately these metrics report on different dimensions with which features are being used.
We observe that some of the top contributing factors are Age, region of the Humana member and risk
adjustment from cms.

EXHIBIT 5-21

Feature | Cover | Gain Sum SHAP Sum Abs SHAP
Age of the Humana member 677 236.981 3.616

Categorical variable of the region 1.916 119.805 85 52.191
Age contrast of the member vs the zip code age average 637 125.383 679 45.880
atlas_pct_cacfp15 853 51.817 - 715 38.172
cms_medicare_riskadjusta 325 41.614 - 566 35.670
Categorical variable of the zip code 5.008 389.394 1.177 35.619
syn_uninsuredchild_to_age 387 48.757 1.011 31.138
prescrip_rx_gpi2_39_pmpm_cost_t_6-3-Om_b4_categorical 379 23.112 1.559 30.354
census_geounit_qualityscore 384 29.393 257 28.324
census_rx_adherence_maint 209 40.420 - 1.330 28.122
demo_mapd_behavioralsegment_categorical 903 23.995 291 27.891
prescrip_rx_bh_pmpm_ct_0to3m_b4 331 13.909 1.980 27.395
cms_totalpartypayment 708 23.307 - 472 26.736
syn_entryreason_zipcode_contrast 161 68.364 - 1.510 25.881
syn_riskadjusta_to_age 323 25.961 - 948 24.978
census_household_investableassets 129 43.051 1.185 24.004
atlas_vlfoodsec_13_15 452 44,807 - 327 23.901
syn_uninsuredadult_to_age 340 66.646 499 23.612
syn_uninsuredadult_zipcode 322 53.316 - 389 23.452
credit_hh_nonmtgcredit_60dpd 430 31.373 253 22.550

Interestingly we see some of the synthetically created features appearing as contributing such as the
contrast of the age of the member against the average age in their zip code area.

25 https://github.com/slundberg/shap
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And analyzing the group-wise variable contribution, exhibit 5-22, we observe that the main feature
contribution in terms of gain comes from the synthetic features derived from all the groups followed by
demographic and prescriptions data:

EXHIBIT 5-22

Feature group ‘ Relative gain contribution
Synthetic features

Demographic data 19,45%
Prescriptions 16,01%
Geographical data (atlas) 14,71%
Census data 5,75%
Credit data 3,51%
CMS data 2,19%
Health data 1,98%
Medical claims 1,69%
Zip data 0,36%
External sources 0,10%
Authorizations 0,08%

4. Uplift: Once the relations between the covariates and the score response from the model have been
analyzed, the immediate next step is to benchmark the model performance against a random classification.
While the AUC is a good proxy for this, uplift has more business meaning attached to it. In exhibit 5-24 we
observe the uplift, or in other words, the factor gain that we accomplish by utilizing the model instead of a
random assignment. If we were to use random assignment, we would expect to have 83% of hesitants in
the first decile of likelihood to be hesitant but utilizing the model, in the first decile by model score we get
96,6% of hesitants —a 15% uplift.

EXHIBIT 5-24

Uplift curve, % of hesitancy by decile of model score

96,67%

—92,80% —gg ogy;

87,12%
8434% g1 74% 4 12%*7524%4‘ 15%
: 72,66%

65,45%

By only targeting the

top 10% of Humana

members, we would

observe a 15%

o increase in hesitant
capture against a

random classification

Decilel Decile2 Decile3 Deciled4 Decile5 Decile6 Decile7 Decile8 Decile9 Decile 10

10% Humana members 10% Humana members

with maost hesitancy to get with least hesitancy to

vaccinated get vaccinated
Highest hesitancy « > Lowest hesitancy
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5.8 FAIRNESS DIAGNOSTIC

As highlighted in the case competition’s guideline, an inherent concern of both Advanced Analytics models and policy
making decision lies in the fairness discussion. A common definition2 is: “Algorithmic bias describes systematic and
repeatable errors in a computer system that create unfair outcomes, such as privileging one arbitrary group of users
over others”. Fairness presents itself in many different and often challenging formats making it difficult for
practitioners and decision makers to mitigate it.

In the context of targeted vaccination outreach, examples where potential sources of unfairness can arise are:

- Historical vaccination availability: If only certain groups have had historical access to the vaccine, the model
will rarely assign high probabilities of taking the vaccine to a minority group member

- Disparities in the population of Humana: If vulnerable groups are underrepresented, the model could
behave ill-manneredly for them

- Survivorship bias: If the data only contains members who survived through a particular period of time
certain minorities that are at-risk and deceased with higher proportions could be omitted

The CDC published in September of 2021 a contrast of COVID effects broken down by ethnicity, one of the minority
segmentations of interest, as can be seen in exhibit 5-26. Although the exhibit could suggest that it is worthy to
invest only in higher risk populations, these figures can be biased by a large number of reasons ranging from historical
access to the vaccine to propensity to self-report certain conditions among different ethnicities.

EXHIBIT 5-2627

Cases’ 1.7x 0.7x 11x 1.9x

Hospitalization® 3.5x 1.0x 2.8x 2.8x

Death® 2.4x 1.0x 2.0x 23x
To illustrate the difficulty and richness of the problem we highlight below three classic and striking fairness scenarios:

o Simpson’s paradox: A study conducted at Berkeley?8 showed that aggregate data on admissions was bias
against women, but when the data was disaggregated to the department level the bias was reversed

o Shared confounder: By law, loan application engines can’t discriminate based on certain criteria set by
GDPR or equivalent organizations — gender, race, ethnicity, zip code... However, these can often be learned

by the model through common confounders22
o Unequal sample rate: Statistical parity between model results for the protected classes are often the goal

of fairness analysis but sometimes are purely nonsensical — think of incidence of breast cancer by gender30

26 https://en.wikipedia.org/wiki/Algorithmic bias

27 https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-race-
ethnicity.html

28 peter | Bickel, Eugene A Hammel, J William O’Connell, and others. 1975. Sex bias in graduate admissions: Data from
Berkeley. Science 187, 4175 (1975), 398-404

29 https://auai.org/uai2019/proceedings/papers/213.pdf
30 https://arxiv.org/pdf/1809.09245.pdf
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While a unified framework to deal with bias tradeoffs has not yet been established, most state-of-the-art fairness

literature focuses on studying the definition of key metrics31. These metrics measure disparities between protected
classes and serve as proxies to inform about the trustworthiness and soundness of studies.

However, reducing the problem from a global fairness mitigation to a metric calibration is not entirely precise as
most studies are significantly metric-sensitive. Some of the most commonly used techniques to reduce the metric
disparities among groups are Unawareness, Demographic Parity, Equalized Odds, Predictive Parity Rate, Individual

Fairness and Counterfactual Fairness32.

We will cover two main bias sources that relate with the vaccination outreach problem — intrinsic biases from data
and algorithm selection respectively. This taxonomy is consistent with the structure that the literature infers on
data biases.

5.8.1 Data biases

To mitigate potential discriminatory outputs, the first block to analyze are the disparities coming from the raw data.
These can be classified into two main groups:

- Sample bias: This type of bias refers to the difference in counts of individuals in the data at hand broken
down by different minority classes. As we saw in the exploratory data analysis section, while the split of
male / females seems to be balanced, for the race split it is predominantly whites. To conclude whether
this bias is discriminatory we would have to go back to the data generation process to see if some members
were being systematically excluded and analyze the outcomes — next subchapter.

- Label bias: This bias refers to discrepancies in the outcome variable modelled across groups of interest.
Again, as noted earlier we saw that some groups display distinctively higher levels of hesitancy than others
as seen in exhibit 5-27.

A NS
iy
Age distribution, Gender, Race,
% hesitancy % hesitancy % hesitancy
<30 years old 93,0
Unknown 90,5
30-39 93,9
Male 834 Hispanic 88,5
40-49 93,3
50-50 91,0 Black 88,1
60-69 85,1 Native N American 87,8
70-79 80,7
Asian 83,4
80-89 e Female 81,9
Other 82,1
90 -99 76,8
>100 75,8 White 81,6

31 Andrea Romei and Salvatore Ruggieri. 2014. A multidisciplinary survey on discrimination analysis. The Knowledge
Engineering Review 29, 05 (2014), 582—- 638

32 https://towardsdatascience.com/a-tutorial-on-fairness-in-machine-learning-3ff8ba1040cb
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5.8.2 Model biases

In addition to the data biases explored earlier, it is worth mentioning the biases that arise from the model
development as well. To determine whether sample bias or label bias are indeed influencing the outcome of our
analytics effort we can refer to the distribution of classes by model likelihood. We do this with two key analyses,
analyzing key metrics for every group of interest — as seen in exhibit 5-19 and by analyzing the percentage of groups
in every decile of model likelihood as in exhibit 5-28.

EXHIBIT 5-28

Groups Distribution of classes by likelihood of hesitancy, % of class in every decile

Gender ,-Q-J W female [l male

a1 a3 2 44 5 45 a7 a8 50 54

Decile 1 Decile 2 Decile 3 Decile 4 Decile 5 Decile 6 Decile 7 Decile 8 Decile 9 Decile 10

0= M N.American Native [l Black [l Other [l White
Race W Asian M Hispanic [l Unknown

- 0

s 1
2
1
3

Decile 1 Decile 2 Decile 3 Decile 4 Decile 5 Decile 6 Decile 7 Decile 8 Decile 9 Decile 10

Lowest hesitancy < > Highest hesitancy

We note that the model assigns high likelihood of hesitancy to more white males than any other race or gender but
in contrast with the average appearance of these classes this should come as no surprise. Interestingly, we see the
percentage of whites decreasing as we increase the likelihood of hesitancy, indicating that there are other races with
higher hesitancy and the model is capturing it accordingly.

Since the discrepancies do not seem significant across groups and all minority groups are represented in the first
likelihood decile by the model, we will not delve deeper into how to tweak the model / data in this study but in the
appendix, we highlight some techniques that could help accomplish more balance.
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6 Optimizing the intervention assignment

Having at hand the key indicators calculated in the previous chapters, in this sixth section we bridge from the
theoretical discussion to the applied field. More specifically, we outline how Humana can directly capture value from
these indicators by creating an optimal targeted outreach plan. Exhibit 6-1 illustrates the resulting dataframe from
the previous efforts. For every pair of member-intervention we have the cost of risk, hesitancy, cost of interventions
and intervention effectiveness.

EXHIBIT 6-1

D intervention hesitancy cost_of_risk cost int_effectiveness

1MObcfaSTac25LcalY 8bbAGI 1. Digital reminder  0.620435 20470 0.01 0.03
1MObcfaSTacB5LcalY3bbAG] 2. Newsletter  0.620485 20470 0.02 0.14
1MCbcfaSTac35LcalY 8bbAGI 3. Phone call 0.620435 20470 20.00 0.18
1MObcfaSTac25Lcaldy 2bbAGI 4 Discount 0.620435 20470 50.00 0.20
1MObcfaSTac85LcalY2bbAGl 5. Cash disbursement  0.620435 20470 50.00 0.20
SMB90STLE20dYeAS40d3480| 1. Digital reminder  0.678411 20470 0.01 0.03
SM390STLE230dYeAS49d34300 2. Newsletter 0.67841 20470  0.02 014
SM390STLE20dYeAS40d34300 3. Phone call 0.6734M 20470 20.00 0.13
SM290STLE20dYeAS40d34300 4 Discount 0678411 20470 50.00 0.20
SMB90STLS20dYeAR40d34801 5. Cash disbursement  0.678411 20470 50.00 0.30

The only missing ingredient to compute the benefit of the intervention is the % of hospitalizations for patients
vaccinated and not vaccinated, i.e. the highlighted terms in the following exhibit.

Benefit of Cost in case of Increase of probability ~ Hesitancy o get X _  Costof _  Benefit of the
intervention hospitalization of vaccination due to vaccinated intervention intervention
formula ‘ intervention

To this end, we have leveraged data from effectiveness (29-fold reduction in hospitalizations) and from monthly

hospitalizations33 (360k at the time of the data gathering in March for the population of interest) to estimate the
probabilities of hospitalization if not vaccinated and vaccinated at 0.8% and 0.03% respectively. With this last
datapoint in hand, we compute the benefit of intervention for each pair of Humana member-intervention. Having
the pairs member-intervention, benefit, and cost, we have formulated an optimization problem to maximize the
captured benefit with the restriction of not exceeding a given cost and not assigning more than one intervention to
the same member as defined in the next page.

33 https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html
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EXHIBIT 6-3

Notation:

r;; = Binary variable indicating if member 1 is given intervention j

bi; = Input indicating the benefit of doing intervention j for member i

¢;; = Input indicating the cost of doing intervention j for member i

Formulation:
maximize E E Tijbi; (Maximization function)
1 31
i g
4
subject to E T <=1 Vi (Max one intervention)
J=1
E E TijCij <= max cost (Cost restriction)
i g
E T +xm—=1 Vi (Only one in first two interventions)
i

Z Tiz + Ty + x5 <1 Vi (Only one in last three interventions)

T

Where we basically want to find the values of x_ij which denote the choice of selecting intervention j for member |
with the cost restrictions and the restrictions of only being able to choose either newsletter or digital reminder and
one of the last 3 interventions at the same time.

Once the optimization problem has been formulated as above, we have solved it with the open-source optimization

package Pulp34 to find the results that will be analyzed in the following subsections.

34 https://github.com/coin-or/pulp
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6.1 OPTIMAL ASSIGNMENT

After executing the optimizer at different cost cutoff points, we retrieve the following graph which portrays the
tradeoff between investing more capital against capturing benefits from the interventions. Each point has been
calculated executing the optimizer described in the previous section with a different cost cutoff for the 805k
members not vaccinated from the train set.

EXHIBIT 6-4

Cumulative benefit of interventions
$ captured

45.000.000 [
40.000.000
35.000.000 -
30.000.000 - cooe®’
25.000.000 | e ®®

20.000.000 oo’ .

15.000.000 ¢ ®®
10.000.000 1
5.000.000

0 . . L
0 5.000.000 10.000.000 15.000.000 20.000.000 25.000.000

Expenditure in interventions
$ invested in interventions

As one can note, from a certain point onwards the relative returns are diminishing yielding that the optimal
breakeven point is at $22Mn. Setting this as our plan, $41Mn in risk revenue could be captured which would total a
$19Mn in risk profit captured - we can double click to analyze which interventions we would actually be performing.
In exhibit 6-5 we see that the first touch point would be mostly newsletter and that 8% of the members would not
be intervened in the second touchpoint.

EXHIBIT 6-5

Intervention % population intervened From the 805k unvaccinated
members in the train set...

Digital reminder

First

touchpoint Educational newsletter .
$22Mn in
97 expenditures

Phone call from healthcare provider

Second i i .
touchpoint Discount in healthcare plan $41Mn in risk

2 captured

Cash disbursement

For all, we can conclude that our effort to quantify the benefit of each combination of member-intervention has
yielded an optimized list of interventions to conduct that would capture an estimated $XXXMn at a cost of SXXXMn.
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7 Appendix

This seventh and last chapter of the study conveys very relevant content that did not find its way in the natural
storyline of the previous chapters. From potential enhancements to some notes on the assumptions made to finally
a reference to the codebase and bibliographic literature leveraged.

7.1 APPROACH ASSUMPTIONS

Throughout the development of the study different assumptions have been made to quantify the different elements
of the benefit equation as below:

Benefit of Cost in case of I of probability  y  Hesitancytoger o ( Probability of ~ _ Probability of ) _ Costof _  Benefitof the
intervention hospitalization of vaccination due to vaccinated hospitalization if hospitalization if intervention = intervention
formula intervention not vaccinated vaccinated

While hesitancy to get vaccinated comes directly from the proprietary Humana data, the other components have
been estimated in an outside-in fashion and could be further refined — to reflect the present state, to include the
particularities of Humana’s context and fine-grain them to be personalized, more precisely:

= Linearity of contribution of effectiveness: While there might be many possible relations in which
interventions affect the decrease of hesitancy, as a simplification we have assumed that it is linear with
constant factors for each different intervention

= External validity of the effectiveness estimates: While the effectiveness estimates of the different
interventions have been pulled from other studies, they might not apply to this particular context or could
be fine-grained. In order to have a more accurate proxy of these it would be necessary to conduct a
randomized control experiment to see how different subpopulations would react to the different
interventions

= Only the costs come from hospitalizations: We are simplifying the approach to only consider
hospitalization costs attributable to the health insurer — network effects, long term health loss and other
factors are not accounted for

=  There are no restrictions to reach out to the population: An underlying hypothesis throughout the study
is that there is freedom to reach out and intervene on every possible member of Humana, this might not
be possible since there could be limits to the number of times they are reached out, Humana does not have
their contact information ...

=  Fine-tune the cost of risk for Humana for each member: In this study we have mapped average
hospitalization costs for different subpopulations — assigning an individualized cost of risk could improve
the faithfulness of the final recommendation
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7.2 POTENTIAL ENHANCEMENTS

Besides refining the different elements from the benefit equation as describe din 7.1, in this subsection we itemize
alternative possibilities to improve the results of the study by enlarging its scope:

= Consider a rolling time period: Instead of having a fixed snapshot of the data and behavior of the
members, a fixed time frame to train and to predict with

= Consider more interventions: Include all the array of potential interventions that Humana can deploy

= Relate the causes of not being vaccinated with the interventions: In this study we have treated the
predictive task as an error-minimizing exercise but have not built the causal graph that would explain the
reasoning behind not getting the vaccine. This graph could be created with field experts and additional
data and would allow to map interventions to causes of hesitancy.

Furthermore, as outlined in the WHO vaccination intervention guideline35, it does not suffice to execute
interventions (steps 1-8 of their guideline) but a crucial feature of the success of any roll out is its continuous
monitoring, in the following exhibit one can observe the steps that the WHO recommends following once a plan of
our characteristics is launched.

EXHIBIT 7-2
..y STEPS

ENGAGE
STAKEHOLDERS

e
=
ENSURE USE DESCRIBE
AND SHARE THE PROGRAM
LESSONS
sl STANDARDS %
Utility
Feasibility
Propriety
Accuracy FOCUS THE
EVALUATION
DESIGN

EVIDENCE
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35 https://www.who.int/immunization/programmes_systems/policies_strategies/MOV _Intervention Guidebook.pdf
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