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1 Executive Summary 

In the US alone there have been 42Mn cases of COVID-19 and 674k deaths since the outbreak of the pandemic 

Vaccines have been established as the best mitigation mechanism to reduce the risks of the virus – 10-fold 

effectiveness for symptom reduction and 29-fold reduction in likelihood of hospitalization1  

~45%2 of the adult US population (147Mn) is still unvaccinated – the most prevalent reasons being side effect 

concerns, skepticism of its effectiveness and disbelief of its need 

Having a sizable share of the population unvaccinated carries three negative consequences – Increased 

humanitarian health risk, global economic slowdown, and monetary cost disbursements for health insurers    

At an average financial cost of hospitalization of $21k, studies3 indicate that the US is paying >$1Bn per month in 

hospitalizations of unvaccinated Medicare patients alone  

In order to increase the vaccination intake, most efforts4 focus on three mechanisms – Increasing vaccination 

access, boosting vaccination demand, and overcoming practice-related barriers 

Humana has partnered with Mays Business School to explore alternatives to boost the vaccination intake through 

an analytics case competition. Our suggested solution consists of a 5-step framework with the objective to increase 

the vaccine demand by quantifying the benefit of potential interventions and finding an optimal assignment: 

1. Quantify individual cost of risk - cost for Humana in case of hospitalization 

2. Characterize potential interventions - cost and effectiveness of some possible actions Humana can take 

3. Estimate the hesitancy of vaccination - degree to which a Humana member does not want the vaccine 

4. Optimize intervention assignment - assignment of actions to members based on the previous metrics 

5. Adjust for fairness - control final outreach policy to control for hidden biases 

Following this framework we have created a cost-effective prioritized list of pairs member-intervention and we 

suggest doing a first touchpoint sending a digital reminder to 3% of Humana members and providing an 

educational newsletter to 97% and a second touch point to 62% of Humana members with a phone call, 2% with 

medical discount, 28% with cash disbursement and not intervening for 8% 

We have sized the potential impact for Humana in ~19Mn USD in case of roll-out for the unvaccinated members 

under study – Since data from March has been used and much has changed since then, in order to make the results 

of this study actionable, the prioritization would need to be re-computed with up-to-date data that reflected the 

present rates of vaccination 

 

 

1 https://www.cnbc.com/2021/08/24/cdc-study-shows-unvaccinated-people-are-29-times-more-likely-to-be-hospitalized-with-
covid.html  

2 https://www.washingtonpost.com/nation/2021/09/28/covid-delta-variant-live-updates/  
3 https://www.usnews.com/news/health-news/articles/2021-09-10/average-covid-hospitalization-is-150-times-more-

expensive-than-vaccination  
4 https://www.amjmed.com/article/S0002-9343(08)00466-X/pdf  

https://www.cnbc.com/2021/08/24/cdc-study-shows-unvaccinated-people-are-29-times-more-likely-to-be-hospitalized-with-covid.html
https://www.cnbc.com/2021/08/24/cdc-study-shows-unvaccinated-people-are-29-times-more-likely-to-be-hospitalized-with-covid.html
https://www.washingtonpost.com/nation/2021/09/28/covid-delta-variant-live-updates/
https://www.usnews.com/news/health-news/articles/2021-09-10/average-covid-hospitalization-is-150-times-more-expensive-than-vaccination
https://www.usnews.com/news/health-news/articles/2021-09-10/average-covid-hospitalization-is-150-times-more-expensive-than-vaccination
https://www.amjmed.com/article/S0002-9343(08)00466-X/pdf
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2 Our approach to solve the vaccination problem 

Vaccination is a practice with a long-standing history. Historians date it back to as early as 1000 CE when the Chinese 

employed smallpox inoculation setting up the basis for the future innovations from Edward Jenner who in 1796 used 

cowpox to create immunity to smallpox. Despite the scientific and historical evidence that vaccines are the gold-

standard to mitigate the risks of diseases, as seen with Smallpox, the Plague, and the Yellow Fever to name a few, 

they have always suffered from detractors who question their efficacy5. Nowadays it is estimated that immunization 

efforts prevent 2-3 million deaths per year6 worldwide. 

In the context of vaccine roll-out for the recent COVID-19 pandemic, we observe that a significant share of the US 

population was vaccinated in the early stages, but the pace has slowed down, projections estimate that it will take 

until mid-2022 to reach 90% vaccination rate among the US population. These differences in vaccine intake are 

uneven by state as can be observed in exhibit 2-1. 

EXHIBIT 2-17 

  

Double clicking on the population that remains unvaccinated we can unveil that there are major discrepancies both 

in terms of socio demographic characteristics as well as causes. White citizens seem to be more averse to vaccination 

than blacks for instance. In terms of the causes, side effects and trust are the main concerns of the public. Exhibit 2-

2 illustrates the discrepancies in vaccine intake both in terms of groups as well as causes.  

EXHIBIT 2-28 

  

 

 

5 https://www.historyofvaccines.org/timeline/all  
6 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4514191/#R3  
7 https://www.nytimes.com/interactive/2020/us/covid-19-vaccine-doses.html?auth=login-email&login=email  
8 https://www.nytimes.com/2021/07/31/us/virus-unvaccinated-americans.html  

https://www.historyofvaccines.org/timeline/all
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4514191/#R3
https://www.nytimes.com/interactive/2020/us/covid-19-vaccine-doses.html?auth=login-email&login=email
https://www.nytimes.com/2021/07/31/us/virus-unvaccinated-americans.html
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Having the historical frame, context of the existing vaccination problematic and implications for a leading health 

insurer in mind, we proceed to explain our approach to fast-track the targeted vaccination outreach. In order to 

calculate the most cost-effective vaccination outreach policy, we have defined a set of potential interventions and 

calculated the individual benefit of each intervention for every Humana member. Our goal is to identify the pairs of 

intervention-member that yield the highest benefit for Humana as seen in exhibit 2-3.  

EXHIBIT 2-3 

 

More specifically, for every Humana member we compute the benefit of every potential interventions as: 

EXHIBIT 2-4 

 

Where the previous terms stand for… 

▪ Cost in case of hospitalization: Monetary value in case of hospitalization. It is calculated as an outside-in 

estimate, for some members like elderly or with existing preconditions it will be higher than for younger 

and healthier individuals 

▪ Increase of probability of vaccination due to intervention: Effect of the intervention in decreasing the 

hesitancy to get vaccinated. A Humana member might respond very positively to a discount while not to an 

SMS. These values are estimated with an outside-in study where we analyze which interventions have 

worked best in the past 

▪ Hesitancy to get vaccinated: Value which reflects (1 – probability to get vaccinated). It is calculated 

analytically from the proprietary Humana data and the historical member characteristics  

▪ Probability hospitalization if not vaccinated – probability hospitalization if vaccinated: Difference in the 

probability of hospitalization thanks to getting the vaccine 

▪ Cost of intervention: Monetary cost of the individual intervention 

Having the previous values will allow us to create a grid with all the possible combinations of intervention-member 

and decide which intervention we would like to assign in a structured and analytical way.  
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Once we have defined the goal of our approach, that is, compute the benefit of every intervention for every member, 

we have structured our study as depicted in exhibit 2-5 with a 5-step framework.  

EXHIBIT 2-5 

 

Following this framework, we will be able to quantify the monetary benefit of every potential intervention to each 

Humana member. The formula in exhibit 4 describes how we reach this final computation. 

As noted in exhibit 2-5, the following chapters will cover the main steps sequentially. Chapter 3 is dedicated to 

studying the cost of risk, chapter 4 to analyzing potential interventions and chapter 5 to develop the probability of 

vaccination model.  

Finally, once these ingredients are in hand, we will proceed with the intervention assignment in chapter 6. Before 

going any further, we stress some key benefits of the previously defined framework: 

o Targeted outreach: This framework provides member-level recommendations 

o Precise quantification of the hesitancy to vaccinate Thanks to the creation of an analytics model, we are 

able to quantitatively estimate the hesitancy to vaccinate of every member 

o Accountability for the individual effect of interventions: The members with highest hesitancy to vaccinate 

may not be the optimal to be reached out – based on predisposition to embrace the intervention, this 

framework accounts for the individual effect of interventions at a member level 

o Monetary association of the actions: Quantifying all the factors in terms of probabilities of certain 

outcomes and monetary cost allows to operate with them and retrieve a dollar figure for the benefit of 

each intervention for each Humana member  

o Profitability assessment: Once all the data is collected and the previous indicators created, this framework 

benefits from calculating the exact breakeven point where it is no longer profitable to intervene – all the 

decisions are driven by their profitability rather than a qualitative assessment  

o Flexibility to incorporate additional mitigating actions: If in the future additional potential interventions 

are devised, they can easily be incorporated to the existing problem and reweight the final decisions  

o Flexibility to change expected costs in case of economic changes: Similar to the previous one, the 

framework can be iterated and refined with no additional efforts changing the parameters of the actions 

An exhaustive list with assumptions and potential enhancements to this framework can be found in the appendix. 



 

6 

3 Quantifying the cost of risk of not being 

vaccinated 

In this third chapter and throughout the entirety of this study we define cost of risk as the expected monetary 

disbursement a health insurer might incur in case of hospitalization. Although cost of risk is not an explicit metric in 

the competition’s description, we believe that any attempt to recommend a policy concerning members with 

heterogeneous conditions and latent risks should account for risk discrepancies. The basic motivation behind the 

use of such an indicator is that it is not the same to successfully distribute 100 vaccines to healthy and 

immunologically strong individuals than administering 100 to a group of at-risk individuals. Since there is no tailored-

to-Humana data regarding cost of hospitalization at our disposal, we have estimated the cost of risk as a function of 

some key covariates from Humana members and an outside-in study of reported costs. Exhibit 3-1 depicts the 

followed procedure. 

EXHIBIT 3-1 

 

With this approach, we have found external studies9  and cost breakdowns10 that are summarized in exhibit 3-2. 

EXHIBIT 3-2 

 

 

 

9 https://www.cbsnews.com/news/covid-vaccination-health-insurance-cost-treatment/  
10 https://www.acpjournals.org/doi/10.7326/M21-1102#t3-M211102  

https://www.cbsnews.com/news/covid-vaccination-health-insurance-cost-treatment/
https://www.acpjournals.org/doi/10.7326/M21-1102#t3-M211102
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Next, we have curated the tree in exhibit 3-3. This tree allows us to group members with similar risk covariates and 

assign a monetary expected cost of hospitalization. That is, in case of hospitalization of a 70-year-old male, the 

average cost associated with the hospitalization is of $25.152 for example. 

EXHIBIT 3-3 

 

 

Although it might initially seem counterintuitive that older patients have lower cost of risk, this is due to the fact 

that the cost associated with hospitalization is heavily correlated with the time spent at a hospital and the older 

population has a higher concentration of deceased individuals making their stay potentially shorter.  

As discussed in the appendix, a potential enhancement of our approach would be to fine-tune these figures to the 

realities observed in Humana in particular. Moreover, an analytics model could be built to estimate this expected 

cost of hospitalization at the individual level instead of assigning group averages from the market. 
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4 Determining potential interventions to enhance 

vaccination 

In this fourth chapter we explore different potential interventions that could help enhance the vaccination intake. 

While the rest of our effort – quantifying the different dimensions of the intervention benefit formula – is a 

quantitative task, in order to have real-world actionability, the appropriate interventions need to be chosen which 

is somewhat more qualitative. A first glimpse at vaccination rates by country allows us to understand potential 

interventions in those countries where the intake has had more historical success. In exhibit 4-1 we can observe 

these discrepancies by country.  

EXHIBIT 4-111 

 

Nonetheless, country specific circumstances might make these policies not applicable to the US, focusing on past 

success histories in the US, an exhaustive study named Practice-Proven Interventions to Increase Vaccination Rates 

and Broaden the Immunization Season12 breaks down the strategies to increase coverage in three categories: 

EXHIBIT 4-2 

 

 

 

11 https://ourworldindata.org/covid-vaccinations  
12 https://www.amjmed.com/article/S0002-9343(08)00466-X/pdf  

https://ourworldindata.org/covid-vaccinations
https://www.amjmed.com/article/S0002-9343(08)00466-X/pdf
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This dichotomy of the alternatives into three blocks is very illustrative – namely increasing vaccination access, 

increasing the demand, or overcoming practice related barriers. The focus of our study is on the second one, i.e. 

increasing the demand. Within the second category – increasing the demand, the CDC13 outlines the following 6 

potential cases as causes of lack of demand 

• Limited access to health care 

• Multiple competing priorities for providers who care for adult patients 

• Low awareness among adults about recommended vaccines and their benefits 

• Challenges in coordinating care for adults who often have more than one medical provider 

• A complicated adult immunization schedule 

• Vaccine cost and reimbursement 

In the context of COVID 19, we will focus on stimulating the third one, which stands for low awareness and resistance 

to the vaccine or hesitancy – the scope of this study. Because of their success in some demonstrated studies14 and 

their potential in others, we have focused on the “Missed opportunity vaccination intervention guidebook from the 

World Health Organization”15 where a comprehensive list of considerations to be made before selecting which 

interventions to pursue is outlined.  

We have defined five types of targeted interventions where in each of them the Humana member would receive 

information reminding: (1) Urgency: They are yet to be vaccinated – (2) Price: The vaccine is free of charge – (3) 

Logistics: Location and opening hours of the closest vaccination clinic to their residence. These five interventions are 

assigned in a two-step process, first assigning the optimal first touch point for the client (digital reminder or 

newsletter) and then decide if it is profitable to assign a second step intervention being – phone call, discount and 

cash disbursement 

▪ Digital reminder: Recall based on the digital channel preference for every member (SMS, email, intranet…) 

conduct a targeted Humana member reach out 

▪ Newsletter education: Send a non-intrusive newsletter through the preferred digital channel of every 

Humana member highlighting the benefits of the vaccine and dangers of not being vaccinated 

▪ Healthcare provider phone call: Interact through a call highlighting the need and logistics of the vaccination 

▪ Discount in healthcare plan16: Notify eligibility for a monetary incentive in case of vaccination. A recent 

study at UCLA indicated that a third of the unvaccinated population would make them more likely to get a 

shot 

▪ Cash disbursement: For some Humana members, release a message notifying that they are eligible for a 

direct cash disbursement and not necessarily associated with a discount in the healthcare plan 

 

 

 

 

 

13 https://www.cdc.gov/vaccines/pubs/pinkbook/strat.html  
14 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4514191/table/T2/?report=objectonly  
15 https://www.who.int/immunization/programmes_systems/policies_strategies/MOV_Intervention_Guidebook.pdf  
16 https://www.nytimes.com/2021/05/04/upshot/vaccine-incentive-experiment.html  

https://www.cdc.gov/vaccines/pubs/pinkbook/strat.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4514191/table/T2/?report=objectonly
https://www.who.int/immunization/programmes_systems/policies_strategies/MOV_Intervention_Guidebook.pdf
https://www.nytimes.com/2021/05/04/upshot/vaccine-incentive-experiment.html
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In order to be able to compute the exact benefit of these interventions at a member level, we have estimated the 

parameters from exhibit 4-3 which characterize the interventions from a cost and effectiveness standpoint. This 

estimation comes from “Strategies for addressing vaccine hesitancy”17 from the World Health Organization 

EXHIBIT 4-3 

 

In the appendix section we discuss how this approximation could be fine-tuned to reflect the realities of Humana 

members and even fine-grained so that every member gets an individualized cost and effectiveness estimate. 

Although our study mainly focuses on how to best allocate resources to conduct a targeted response – that is, 

identifying which members will better respond to which interventions – some group-wide interventions deserve to 

be considered such as: 

- Run a vaccine lottery 

- Establish partnerships with pharmacies / businesses to give immediate discounts 

- Location speeches 

- Commercial awareness 

The decision to conduct a group-wide intervention – partnership with employers, conferences… - could be fueled 

with the indicators we are creating in this study, but it is outside the scope of the present body of work, in the 

appendix section we discuss about it with more detail.  

 

 

17 
https://www.who.int/immunization/sage/meetings/2014/october/3_SAGE_WG_Strategies_addressing_vaccine_hesitancy_2
014.pdf  

https://www.who.int/immunization/sage/meetings/2014/october/3_SAGE_WG_Strategies_addressing_vaccine_hesitancy_2014.pdf
https://www.who.int/immunization/sage/meetings/2014/october/3_SAGE_WG_Strategies_addressing_vaccine_hesitancy_2014.pdf
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5 Estimating the hesitancy of vaccination 

The focus of the fifth chapter is to present an in-depth step-by-step approach to the solution followed to estimate 

the likelihood of not being vaccinated (defined in this context as hesitancy). It is structured as a sequence of 

subchapters beginning with the data gathering and consolidation process to later discuss the definition of the 

population and target variable. Once all the preliminary ingredients are ready, we study the algorithm developed 

together with the interpretation of its results and the fairness consequences. Following the framework discussed in 

chapter 2, this section is dedicated to study the shaded step in exhibit 5-1. 

EXHIBIT 5-1 

 

Additionally, this fifth chapter builds some necessary intuition around the problem and analytics solution developed 

and extracts key insights that will be crucial to derive the implications for Humana discussed in chapter 6. Illustration 

5-2 depicts the steps followed to bridge from the raw data to the unbiased likelihood of hesitancy estimates. 

EXHIBIT 5-2 

 

 

 

As one can note, the steps until the master table consolidation are sequential but the last refinements involve 

iterations since the results of the model will in part influence its posterior recalibrations to account for fairness, 

biases, and goodness of fit. 
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5.1 HUMANA’S DATA OVERVIEW  

The first step in any analytics study consists of analyzing the available data, its content and format. From the raw 

data provided by Humana, we observe that there are 1.5Mn unique members, 974k of whom have the vaccination 

information available.  

EXHIBIT 5-3 

 

For this 1.5Mn Humana members, we have at our disposal 367 raw variables from 11 different data blocks. The 

breakdown of raw variables per data block is depicted in exhibit 5-4. 

EXHIBIT 5-4 

 

Our goal in this chapter will be to find patterns between these rich data sources and the flag of vaccination for the 

974k members and then evaluate whether we have a sufficiently strong evidence to generalize for the remainder of 

the 1.5Mn population. As one can note, these rich sources will allow for a broader prediction, i.e. not limited to 

health data or patient’s history but also containing other more diverse attributes. 
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5.2 EXTERNAL DATA UTILIZED 

In addition to the raw sources provided by Humana and detailed in the previous subsection, we have collected 

external and publicly available information that covers different dimensions and enriches the upcoming analyses. 

Namely, the additional data sources leveraged are the following: 

- Vaccination hesitancy surveys from healthdata.org18: This weekly data at the zip code level offers a rich 

view of which geographies are more hesitant to be vaccinated. A sample in each US zip code is surveyed 

with the following two questions: 

o Yes, probably will and no probably won’t respondents 

o Yes, probably will, no probably won’t, and no definitely won’t respondents 

We use this data as a structural screenshot in time to allow the model to rank-order geographies based on 

the degree to which people are hesitant in them. Exhibit 5-5 illustrates the raw format of this data source. 

EXHIBIT 5-5 

 

- Zip code structural data from uszipcode19: Additionally to the geographic data provided from Humana, we 

have leveraged a public API to retrieve zip code specific characteristics. These characteristics contain 

complementary data such as housing units, occupied housing units, population density, water area… which 

can add value in the upcoming prediction task. The raw format of this data can be found in exhibit 5-6 and 

in the future references on the synthetic variables utilized for the prediction task. 

EXHIBIT 5-6 

 

 

 

18 https://vaccine-hesitancy.healthdata.org/ and http://www.healthdata.org/acting-data/covid-19-vaccine-hesitancy-us-
county-and-zip-code 

19 https://github.com/MacHu-GWU/uszipcode-project  

https://vaccine-hesitancy.healthdata.org/
http://www.healthdata.org/acting-data/covid-19-vaccine-hesitancy-us-county-and-zip-code
http://www.healthdata.org/acting-data/covid-19-vaccine-hesitancy-us-county-and-zip-code
https://github.com/MacHu-GWU/uszipcode-project
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5.3 PERIMETER OF ANALYSIS – HUMANA MEMBERS ANALYZED 

Once all the data has been gathered, cleansed, and consolidated, the immediate next step consists of defining the 

perimeter of analysis or population. In our study this perimeter has already been outlined by the Humana organizing 

team already, namely the 1.5Mn members who were in a Medicare advantage plan20 and eligible to get vaccinated 

in March 2021. With this definition we first observe the traits that characterize this population in exhibit 5-7. 

EXHIBIT 5-7 

 

While the gender distribution appears to be balanced, both the race and age are skewed. We can see that the age 

distribution of the 1.5Mn Humana members is skewed to the older side with an average age of 71 years old. Similarly, 

83% of all the members under analysis are white. 

Analyzing the data at the zip code level, we can see how the 1.5Mn of members in our perimeter of analysis are 

distributed across the US. Exhibit 5-8 illustrates that there are some zip codes with high concentration of Humana 

members and taking it to the country level we see some “hot spots” that concentrate higher counts than others. 

EXHIBIT 5-8 

 

 

 

20 https://www.medicare.gov/sign-up-change-plans/types-of-medicare-health-plans/medicare-advantage-plans  

https://www.medicare.gov/sign-up-change-plans/types-of-medicare-health-plans/medicare-advantage-plans
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5.4 EXPLANATORY VARIABLES 

The next step in the model development phase consists of extracting explanatory variables at the member level 

which can be later utilized by the advanced analytics model. For each of the variables in every data source, we have 

proceeded doing the following: 

1. Variable cleansing:  

o Renaming: Based on the definitions provided by Humana all the raw variables have been renamed 

for the ease of comprehension throughout the study 

o Filling null values: Most variables have different reasons of nullable values, we have carried out 

contextual imputation, i.e. in some cases filling by 0, others by the mean and others by the mode 

depending on the context of the variable at hand and the potential reason for it being null 

o Assigning the correct variable type: In order to have homogeneity across variables, all have been 

converted to the type “float64”, this unveiled that some variables had unexpected values like “*” 

or text within a numeric variable and we controlled to solve these issues. The analytics model will 

ingest a table only filled with numeric values 

o Label encoding of categorical values: Similar to the previous step, all categorical variables have 

been mapped to numeric values, when the ordering between them may have sense it has been 

preserved and otherwise it is let as a label encoded feature and we specify to the algorithm which 

are categorical features21 

o Fill missing zip code information: For some of the external data we were not able to map to the 

exact zip code, we have followed a proximity approach assigning the external data of the closest 

zip code available 

 

2. Combine with other variables to create synthetic indicators: 

o Direct explanatory features: These consist of the already cleansed variables with no changes 

o Zip code aggregations: Average of other variables (income, health risk…) by code of the member 

o Zip code discrepancies: Discrepancy between the variables (income) and the average of code 

o Age quotients: Division of some indicators against age – loans, health risk, # admissions… 

o Count of categorical variables: Count encoding for the categorical variables, # appearances 

After these 3 steps and extracting several additional features that might be relevant for the modelling process, we 

have a resulting master data table that consists of 627 explanatory variables. These can be classified into 12 blocks 

as depicted in exhibit 5-9.  

EXHIBIT 5-9 

 

 

 

21 https://lightgbm.readthedocs.io/en/latest/Features.html#optimal-split-for-categorical-features  

https://lightgbm.readthedocs.io/en/latest/Features.html#optimal-split-for-categorical-features


 

16 

Once we have cleansed and created a comprehensively exhaustive set of explanatory variables, a necessary sanity 

check consists of validating their disparity between training and testing data. Since our ultimate goal throughout this 

chapter is to find patterns between the covariates and the hesitancy response that generalizes to the test set (unseen 

labels), it is fundamental that the test set is similarly distributed to the train data. We have first analyzed the decile 

distribution of each of the 627 variables to validate that their range is consistent with their description as can be 

seen for some variables in exhibit 5-10. 

EXHIBIT 5-10 
Variable Decile1 Decile2 Decile3 Decile4 Decile5 Decile6 Decile7 Decile8 Decile9 
atlas_agritrsm_rct12 5000,00 14000,00 38000,00 79000,00 141000,00 210699,42 210699,42 210699,42 463000,00 
atlas_avghhsize 2,37 2,42 2,47 2,51 2,55 2,59 2,64 2,72 2,78 
atlas_berry_acrespth12 0,00 0,01 0,04 0,08 0,16 0,21 0,21 0,21 0,36 
atlas_berry_farms12 0,00 2,00 3,00 4,00 6,00 8,00 10,00 14,00 25,00 
atlas_convspth14 0,27 0,33 0,36 0,40 0,45 0,49 0,55 0,62 0,72 
atlas_csa12 0,00 1,00 1,00 2,00 3,00 3,00 4,00 6,00 8,00 
atlas_deep_pov_all 4,09 4,99 5,68 6,31 6,87 7,33 7,69 8,19 9,19 
atlas_deep_pov_children 4,64 6,00 7,10 8,04 9,09 9,90 10,72 11,86 14,47 
atlas_dirsales_farms12 12,00 18,00 28,00 35,00 42,00 49,00 61,00 84,00 120,00 
atlas_farm_to_school13 0,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 
atlas_ffrpth14 0,43 0,52 0,57 0,63 0,67 0,71 0,75 0,79 0,84 
atlas_fmrktpth16 0,00 0,01 0,01 0,02 0,02 0,03 0,03 0,04 0,06 
atlas_foodhub16 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
atlas_foodinsec_13_15 11,10 12,20 12,70 13,80 14,60 14,90 15,40 16,10 17,60 
atlas_foodinsec_child_03_11 7,40 7,80 8,00 8,70 9,23 9,40 10,00 10,50 11,40 
atlas_freshveg_farms12 3,00 6,00 10,00 13,00 15,00 17,00 21,00 29,00 47,00 
atlas_fsrpth14 0,42 0,52 0,58 0,63 0,69 0,73 0,77 0,84 0,96 
atlas_ghveg_farms12 0,00 0,00 1,00 1,00 2,00 3,00 5,00 6,00 9,00 
atlas_ghveg_sqftpth12 0,00 0,00 0,00 0,22 15,68 60,48 60,48 60,48 137,80 
atlas_grocpth14 0,11 0,13 0,14 0,15 0,16 0,18 0,19 0,21 0,25 
atlas_hh65plusalonepct 8,36 9,25 10,11 10,51 11,00 11,48 12,06 12,92 14,11 
atlas_hiamenity 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,00 1,00 
atlas_hipov_1115 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,00 
atlas_low_education_2015_update 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
atlas_low_employment_2015_update 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,00 

atlas_medhhinc 
39704,0

0 42998,00 46239,00 49277,00 51549,00 54053,00 56855,00 60025,00 67503,00 
atlas_naturalchangerate1016 -1,02 0,01 0,60 1,19 1,73 2,31 3,04 3,66 4,46 
atlas_net_international_migration_rate 0,07 0,16 0,25 0,36 0,48 0,66 1,01 1,44 2,11 
atlas_netmigrationrate1016 -3,33 -1,84 -0,96 -0,01 0,91 1,82 3,19 4,57 6,57 
atlas_orchard_acrespth12 0,01 0,09 0,17 0,31 0,54 0,80 1,25 2,03 2,79 
atlas_orchard_farms12 2,00 4,00 6,00 9,00 11,00 15,00 19,00 26,00 46,00 
atlas_ownhomepct 56,67 62,60 65,74 68,67 70,57 72,16 73,77 75,78 78,40 
atlas_pc_dirsales12 0,16 0,45 0,80 1,38 2,30 3,30 4,24 6,00 8,97 
atlas_pc_ffrsales12 495,41 523,89 567,30 608,73 622,68 642,49 649,09 665,32 677,73 
atlas_pc_fsrsales12 557,09 598,47 623,59 642,78 649,84 688,25 690,52 738,37 882,94 
atlas_pc_snapben15 8,94 11,63 13,93 15,75 17,46 18,64 20,34 23,27 27,42 
atlas_pc_wic_redemp12 11,20 13,15 15,00 16,81 18,44 18,52 20,44 22,57 26,71 
atlas_pct_cacfp15 0,82 0,99 1,10 1,13 1,24 1,33 1,39 1,64 1,73 
atlas_pct_diabetes_adults13 8,50 9,20 9,80 10,30 10,80 11,40 12,10 12,70 13,80 
atlas_pct_fmrkt_anmlprod16 0,00 33,33 50,00 50,00 55,98 62,63 70,00 87,50 100,00 
atlas_pct_fmrkt_baked16 0,00 45,56 50,00 58,18 60,32 66,67 75,00 100,00 100,00 
atlas_pct_fmrkt_credit16 0,00 0,00 33,33 49,88 50,00 60,00 70,00 80,00 100,00 
atlas_pct_fmrkt_frveg16 15,00 50,00 52,00 62,58 64,67 72,23 81,15 100,00 100,00 
atlas_pct_fmrkt_otherfood16 0,00 33,33 50,00 55,01 57,72 66,67 75,00 100,00 100,00 
atlas_pct_fmrkt_sfmnp16 0,00 0,00 0,00 0,00 0,00 4,04 17,32 35,23 60,67 
atlas_pct_fmrkt_snap16 0,00 0,00 0,00 0,00 8,33 21,19 28,17 41,60 60,00 
atlas_pct_fmrkt_wic16 0,00 0,00 0,00 0,00 0,00 0,00 13,67 28,88 50,00 
atlas_pct_fmrkt_wiccash16 0,00 0,00 0,00 0,00 0,00 0,00 0,00 4,56 17,29 

 

Next, and in order to check for structural differences between train and test sets, we have taken the differences of 

the deciles of each variable between train and test. High values in these would yield a difference not only at an 

average level but at a distribution level, this has served us to further cleanse the variables, exhibit 5-11 depicts an 

example of how the distribution of the difference looks like for some of the variables. 

EXHIBIT 5-11 
Var Decile1 Decile2 Decile3 Decile4 Decile5 Decile6 Decile7 Decile8 Decile9 
atlas_avghhsize 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
atlas_berry_acrespth12 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
atlas_berry_farms12 0,00 0,00 0,00 0,00 0,00 0,00 0,00 -1,00 0,00 
atlas_convspth14 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
atlas_csa12 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
atlas_deep_pov_all 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
atlas_deep_pov_children 0,00 0,00 0,00 -0,01 0,00 0,00 -0,01 0,00 0,00 
atlas_dirsales_farms12 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
atlas_farm_to_school13 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
atlas_ffrpth14 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
atlas_fmrktpth16 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
atlas_foodhub16 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
atlas_foodinsec_13_15 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
atlas_foodinsec_child_03_11 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
atlas_freshveg_farms12 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
atlas_fsrpth14 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
atlas_ghveg_farms12 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
atlas_ghveg_sqftpth12 0,00 0,00 0,00 0,05 0,00 0,00 0,00 0,00 2,78 
atlas_grocpth14 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
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5.5 TARGET VARIABLE DEFINITION – HESITANCY OF VACCINATION INDICATOR 

The target response is the variable that we want to learn patterns from and extract predictions for the hold out test. 

As discussed earlier, our focus will be in estimating the likelihood of being hesitant to get a vaccine and with this 

purpose the data facilitated from Humana already has this flag at the member level. For every member in the 

Humana population provided we know if they got the vaccine or not. 

While this prediction should be performed in a rolling window basis, i.e. utilize the last batch of N months available 

data to see if the individual gets a vaccine in the next M months, in the context of this competition we only have at 

our disposal static data from a particular point in time. 

Once the target for the advanced analytics model has been defined, namely the flag of hesitancy, we can cross relate 

it with other covariates to test its business sense. The following exhibits try to assess and illustrate its adequacy.  

From exhibit 5-12 we can observe that Humana members with certain demographic characteristics show different 

rates of hesitancy to vaccinate. For instance, the older the member the less hesitant it is to vaccinate. 

EXHIBIT 5-12 

 

 

Additionally, the rate of hesitancy to vaccinate is not homogeneous across regions of the US. We can observe the 

contrast of hesitancy to vaccinate by state and observe that there are some with very varying levels of vaccination 

penetration. 

EXHIBIT 5-13 
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Interestingly, there are some variables that descriptively display a relation with the hesitancy of vaccination. At this 

point we cannot yet assess neither the predictive power nor the causality between them, but checking the individual 

relations builds a better understanding of the problem at hand. 

For instance, we can observe that the reason of entry to the Medicare system displays some disparities across 

groups. Similarly, the higher the percentage of adults without health insurance in the area where the member resides 

yields higher levels of hesitancy. Interestingly, the higher the net worth of the Humana member, the lower the 

hesitancy to get a vaccine. 

EXHIBIT 5-14 

 
 

While we could do this exercise for all the variables that show a slight resemblance with the response target, we will 

not analyze the individual descriptive relations and contributions until after the model development in the 

immediate next section. The reason behind this choice is that the model will autonomously point us towards those 

indicators that display such a noteworthy relation with the hesitancy response. 
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5.6 ADVANCED ANALYTICS MODEL DEVELOPMENT 

Once the population has been defined, the explanatory variables extracted and the target variable analyzed, we are 

ready to begin with the model development phase. Because of its flexibility, predictive power, ease of use and 

explainability we have mainly focused on tree-based boosting algorithms to estimate the probability of vaccination. 

More precisely, after trying different extreme gradient boosting frameworks, we have selected LightGBM’s22 native 

implementation because of the results obtained. Although we will not expand on how this family of algorithms work, 

exhibit 5-15 portrays the basic idea behind its steps. 

EXHIBIT 5-15 

 

There are three considerations that need to be made before beginning the modeling phase: 

▪ Metric of interest: In this case the metric of interest is area under the receiver operating characteristic23 

as specified by the organization of the case competition. Defining this metric allows us to discriminate 

between models based on which one performs best in a given metric 

 

▪ Parameter fine-tuning: This step consists of finding a set of parameters that in some sense maximizes the 

previously defined metric. To choose an adequate set of parameters we have executed a Bayesian 

Optimization algorithm24 to find a locally maximizing set in a 5-fold cross validation framework 

 

▪ Train-validation-test split: Once the metric of interest and parameters have been defined, the 

train/validation/test split needs to be established. This has more relevance in time-dependent problems 

than in our static setup. We have proceeded with a 5-fold cross validation framework to produce out of 

sample predictions for the entirety of the population at hand and the test sets for the public leaderboard 

 

 

 

 

22 https://github.com/microsoft/LightGBM  
23 https://en.wikipedia.org/wiki/Receiver_operating_characteristic  
24 https://github.com/fmfn/BayesianOptimization  

https://github.com/microsoft/LightGBM
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://github.com/fmfn/BayesianOptimization
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Before delving into the result analysis, we will illustrate two of the three design dimensions previously explained, we 

won’t deep dive on the metric of interest since it is already prescribed by the competition organizers and there is no 

room to maneuver. The train / validation / test schema followed can be observed in the following exhibit. 

EXHIBIT 5-16 

 

And regarding the choice of parameters, as described earlier, we have executed a Bayesian Optimization search of 

parameters to maximize the 5-fold cross validation average of the AUC. That is, we have split the training the data 

in 5 equally sized groups, initiated 20 random sets of parameters and then performed a Bayesian search of 5 steps 

from the previous results (based on the relation from the parameters and the AUC found earlier the Bayesian steps 

to new parameter space are different). With this procedure we obtain 25 combinations of parameters – AUC with 

one of them maximizing it as can be seen below. The first row being the finally chosen parameters. 

EXHIBIT 5-17 

Fold AUC 
avg 

Bagging 
fraction 

Feature 
fraction Lambda l1 Lambda l2 

Maximum 
depth 

Minimum child 
weight 

Min split 
gain 

Number of 
leaves 

0,6822 0,9286 0,2211 2,5744 2,7055 6,9236 40,9941 0,0265 39,7328 

0,6809 0,9094 0,3069 0,8732 1,0821 6,8224 22,5085 0,0477 44,0648 

0,6807 0,9412 0,2973 1,2800 0,0720 6,2834 18,5196 0,0644 24,6662 

0,6800 0,8773 0,1678 2,8100 1,9442 13,6051 13,5159 0,0955 16,7707 

0,6784 0,8291 0,5114 2,6383 0,9157 7,0758 31,8610 0,0113 32,0390 

0,6764 0,8801 0,5361 3,2096 1,4209 12,3265 31,5178 0,0320 37,7406 

0,6762 0,8144 0,5067 2,6029 2,8051 14,5742 44,5679 0,0073 39,7840 

0,6762 0,9714 0,4812 4,3157 1,9827 12,1565 40,9907 0,0322 16,1626 

0,6760 0,9956 0,5816 4,1765 0,2561 11,3478 45,5141 0,0918 21,5065 

0,6757 0,9177 0,5332 1,2138 0,8804 13,8319 20,8340 0,0333 33,9449 

0,6756 0,9423 0,7037 0,3986 0,0462 7,1902 6,7356 0,0701 31,9446 

0,6753 0,9276 0,4946 2,4589 2,3885 15,4257 9,3921 0,0296 20,0991 

0,6752 0,9055 0,6810 4,3230 2,8077 8,6657 42,3061 0,0786 19,2576 

0,6750 0,8007 0,5893 1,7269 1,4364 17,7778 13,7748 0,0331 44,3028 

0,6747 0,9714 0,6568 2,7651 2,8057 11,6641 12,9925 0,0541 23,8038 

0,6745 0,8550 0,5853 2,0581 1,1063 17,4146 5,2342 0,0956 15,9803 

0,6744 0,9760 0,7270 1,2624 2,7813 10,7818 21,9718 0,0895 37,6216 

0,6743 0,9757 0,6381 0,0344 0,1133 14,4615 34,1437 0,0545 23,9371 

0,6737 0,9617 0,7368 1,3996 1,3663 10,1694 47,9044 0,0356 16,7828 

0,6733 0,9549 0,8032 2,4074 0,9087 10,7581 28,7660 0,0612 30,7573 

0,6731 0,8021 0,8070 3,2821 2,8268 14,6843 17,0245 0,0368 30,7921 

0,6730 0,8671 0,8418 1,4522 0,1415 9,4920 25,8249 0,0518 20,5584 

0,6728 0,8371 0,8338 1,3546 0,8206 17,4074 10,7202 0,0750 15,1571 

0,6726 0,8227 0,8796 3,6437 1,0544 14,1989 40,9822 0,0649 27,4380 

0,6722 0,9758 0,8854 0,1235 1,2147 16,3063 19,7048 0,0861 25,2199 
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5.7 RESULT ANALYSIS   

In this subsection we will delve into the results obtained from the modelling effort. These consist of 4 key indicators 

that allow us to understand the quality and nature of our model – goodness of fit, score calibration, feature 

contributions, and uplift. While only the final results are displayed in this document, these metrics serve as the basis 

to select from one model to another in the development phase that was conducted before reaching the final model 

here presented. 

1. Goodness of fit: The first result analysis to carry out is the goodness of fit check – i.e. how faithful are the 

model predictions with the underlying true labels. In the following exhibit one can observe the two main 

metrics of interest – AUC and disparity score – for the different sets of data that we have access to. While 

the training performance allows us to estimate whether patterns are found successfully, the other serve 

as guardrails to check if indeed these patterns are held in unseen data. 

EXHIBIT 5-18 

  

 

Additionally, we can double click on certain populations of interest to see how well our predictions are to 

group-specific individuals. In exhibit 5-19 we can observe the goodness of fit for the two variables of 

interest, gender, and race. 

EXHIBIT 5-19 
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2. Score calibration: While in some classification use-cases a rank-ordering of the members might suffice, 

since we are utilizing the model scores as true odds of hesitancy to later be used as probabilities in the 

benefit formula, they should be aligned with the true odds coming from the data. That is, if we binarize the 

scoring distribution from the train data, we should see similar target averages. We analyze this behavior in 

the following exhibit to conclude that the scores as-are are well enough calibrated and no further 

modifications like isotropic regression need to be made. 

EXHIBIT 5-20 

  

 

Decile of model probability Avg model probability % Hesitant population 

Decile 1 - (0.164-0.702] 64,77% 65,45% 

Decile 2 - (0.702-0.748] 72,65% 72,67% 

Decile 3 - (0.748- 0.781] 76,48% 76,24% 

Decile 4 - (0.781-0.809] 79,50% 79,13% 

Decile 5 - (0.809-0.835] 82,20% 81,75% 

Decile 6 - (0.835-0.861] 84,78% 84,35% 

Decile 7 - (0.861-0.886] 87,34% 87,13% 

Decile 8 -(0.886-0.913] 89,95% 89,98% 

Decile 9 - (0.913-0.941] 92,66% 92,80% 

Decile 10 - (0.941- 0.998] 96,06% 96,68% 

 

3. Feature contributions: There are several ways we can use to assess the strength with which a boosting 

model relies on a particular feature. During the model development (to engineer new features) and in the 

final model understanding, we have focused on 4 – cover, gain, sum of SHAP25 values and sum of absolute 

SHAP values. Separately these metrics report on different dimensions with which features are being used. 

We observe that some of the top contributing factors are Age, region of the Humana member and risk 

adjustment from cms. 

EXHIBIT 5-21 

  

 

Feature Cover Gain Sum SHAP Sum Abs SHAP 

Age of the Humana member            677         236.981               3.616                 79.831  

Categorical variable of the region        1.916         119.805                     85                 52.191  

Age contrast of the member vs the zip code age average            637         125.383                  679                 45.880  

atlas_pct_cacfp15            853           51.817  -               715                 38.172  

cms_medicare_riskadjusta            325           41.614  -               566                 35.670  

Categorical variable of the zip code         5.008         389.394               1.177                 35.619  

syn_uninsuredchild_to_age            387           48.757               1.011                 31.138  

prescrip_rx_gpi2_39_pmpm_cost_t_6-3-0m_b4_categorical            379           23.112               1.559                 30.354  

census_geounit_qualityscore            384           29.393                  257                 28.324  

census_rx_adherence_maint            209           40.420  -            1.330                 28.122  

demo_mapd_behavioralsegment_categorical            903           23.995                  291                 27.891  

prescrip_rx_bh_pmpm_ct_0to3m_b4            331           13.909               1.980                 27.395  

cms_totalpartypayment            708           23.307  -               472                 26.736  

syn_entryreason_zipcode_contrast            161           68.364  -            1.510                 25.881  

syn_riskadjusta_to_age            323           25.961  -               948                 24.978  

census_household_investableassets            129           43.051               1.185                 24.004  

atlas_vlfoodsec_13_15            452           44.807  -               327                 23.901  

syn_uninsuredadult_to_age            340           66.646                  499                 23.612  

syn_uninsuredadult_zipcode            322           53.316  -               389                 23.452  

credit_hh_nonmtgcredit_60dpd            430           31.373                  253                 22.550  

Interestingly we see some of the synthetically created features appearing as contributing such as the 

contrast of the age of the member against the average age in their zip code area. 

 

 

25 https://github.com/slundberg/shap  

https://github.com/slundberg/shap
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And analyzing the group-wise variable contribution, exhibit 5-22, we observe that the main feature 

contribution in terms of gain comes from the synthetic features derived from all the groups followed by 

demographic and prescriptions data: 

EXHIBIT 5-22 

  

 

Feature group Relative gain contribution 

Synthetic features 34,16% 

Demographic data 19,45% 

Prescriptions 16,01% 

Geographical data (atlas) 14,71% 

Census data 5,75% 

Credit data 3,51% 

CMS data 2,19% 

Health data 1,98% 

Medical claims 1,69% 

Zip data 0,36% 

External sources 0,10% 

Authorizations 0,08% 

 

4. Uplift: Once the relations between the covariates and the score response from the model have been 

analyzed, the immediate next step is to benchmark the model performance against a random classification. 

While the AUC is a good proxy for this, uplift has more business meaning attached to it. In exhibit 5-24 we 

observe the uplift, or in other words, the factor gain that we accomplish by utilizing the model instead of a 

random assignment. If we were to use random assignment, we would expect to have 83% of hesitants in 

the first decile of likelihood to be hesitant but utilizing the model, in the first decile by model score we get 

96,6% of hesitants – a 15% uplift.   

EXHIBIT 5-24 
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5.8 FAIRNESS DIAGNOSTIC 

As highlighted in the case competition’s guideline, an inherent concern of both Advanced Analytics models and policy 

making decision lies in the fairness discussion. A common definition26 is: “Algorithmic bias describes systematic and 

repeatable errors in a computer system that create unfair outcomes, such as privileging one arbitrary group of users 

over others”. Fairness presents itself in many different and often challenging formats making it difficult for 

practitioners and decision makers to mitigate it.   

In the context of targeted vaccination outreach, examples where potential sources of unfairness can arise are: 

- Historical vaccination availability: If only certain groups have had historical access to the vaccine, the model 

will rarely assign high probabilities of taking the vaccine to a minority group member  

- Disparities in the population of Humana: If vulnerable groups are underrepresented, the model could 

behave ill-manneredly for them 

- Survivorship bias: If the data only contains members who survived through a particular period of time 

certain minorities that are at-risk and deceased with higher proportions could be omitted 

The CDC published in September of 2021 a contrast of COVID effects broken down by ethnicity, one of the minority 

segmentations of interest, as can be seen in exhibit 5-26. Although the exhibit could suggest that it is worthy to 

invest only in higher risk populations, these figures can be biased by a large number of reasons ranging from historical 

access to the vaccine to propensity to self-report certain conditions among different ethnicities.   

EXHIBIT 5-2627 

  

To illustrate the difficulty and richness of the problem we highlight below three classic and striking fairness scenarios:   

o Simpson’s paradox: A study conducted at Berkeley28 showed that aggregate data on admissions was bias 

against women, but when the data was disaggregated to the department level the bias was reversed 

o Shared confounder: By law, loan application engines can’t discriminate based on certain criteria set by 

GDPR or equivalent organizations – gender, race, ethnicity, zip code… However, these can often be learned 

by the model through common confounders29 

o Unequal sample rate: Statistical parity between model results for the protected classes are often the goal 

of fairness analysis but sometimes are purely nonsensical – think of incidence of breast cancer by gender30 

 

 

26 https://en.wikipedia.org/wiki/Algorithmic_bias  
27 https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-race-

ethnicity.html  
28 Peter J Bickel, Eugene A Hammel, J William O’Connell, and others. 1975. Sex bias in graduate admissions: Data from 

Berkeley. Science 187, 4175 (1975), 398–404 
29 https://auai.org/uai2019/proceedings/papers/213.pdf  
30 https://arxiv.org/pdf/1809.09245.pdf  

https://en.wikipedia.org/wiki/Algorithmic_bias
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-race-ethnicity.html
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-race-ethnicity.html
https://auai.org/uai2019/proceedings/papers/213.pdf
https://arxiv.org/pdf/1809.09245.pdf
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While a unified framework to deal with bias tradeoffs has not yet been established, most state-of-the-art fairness 

literature focuses on studying the definition of key metrics31. These metrics measure disparities between protected 

classes and serve as proxies to inform about the trustworthiness and soundness of studies. 

However, reducing the problem from a global fairness mitigation to a metric calibration is not entirely precise as 

most studies are significantly metric-sensitive. Some of the most commonly used techniques to reduce the metric 

disparities among groups are Unawareness, Demographic Parity, Equalized Odds, Predictive Parity Rate, Individual 

Fairness and Counterfactual Fairness32. 

We will cover two main bias sources that relate with the vaccination outreach problem – intrinsic biases from data 

and algorithm selection respectively. This taxonomy is consistent with the structure that the literature infers on 

data biases. 

5.8.1 Data biases 

To mitigate potential discriminatory outputs, the first block to analyze are the disparities coming from the raw data. 

These can be classified into two main groups: 

- Sample bias: This type of bias refers to the difference in counts of individuals in the data at hand broken 

down by different minority classes. As we saw in the exploratory data analysis section, while the split of 

male / females seems to be balanced, for the race split it is predominantly whites. To conclude whether 

this bias is discriminatory we would have to go back to the data generation process to see if some members 

were being systematically excluded and analyze the outcomes – next subchapter. 

 

- Label bias: This bias refers to discrepancies in the outcome variable modelled across groups of interest. 

Again, as noted earlier we saw that some groups display distinctively higher levels of hesitancy than others 

as seen in exhibit 5-27. 

EXHIBIT 5-27 

  

 

 

31 Andrea Romei and Salvatore Ruggieri. 2014. A multidisciplinary survey on discrimination analysis. The Knowledge 
Engineering Review 29, 05 (2014), 582– 638 

32 https://towardsdatascience.com/a-tutorial-on-fairness-in-machine-learning-3ff8ba1040cb  

https://towardsdatascience.com/a-tutorial-on-fairness-in-machine-learning-3ff8ba1040cb
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5.8.2 Model biases 

In addition to the data biases explored earlier, it is worth mentioning the biases that arise from the model 

development as well. To determine whether sample bias or label bias are indeed influencing the outcome of our 

analytics effort we can refer to the distribution of classes by model likelihood. We do this with two key analyses, 

analyzing key metrics for every group of interest – as seen in exhibit 5-19 and by analyzing the percentage of groups 

in every decile of model likelihood as in exhibit 5-28. 

EXHIBIT 5-28 

  

We note that the model assigns high likelihood of hesitancy to more white males than any other race or gender but 

in contrast with the average appearance of these classes this should come as no surprise. Interestingly, we see the 

percentage of whites decreasing as we increase the likelihood of hesitancy, indicating that there are other races with 

higher hesitancy and the model is capturing it accordingly.  

Since the discrepancies do not seem significant across groups and all minority groups are represented in the first 

likelihood decile by the model, we will not delve deeper into how to tweak the model / data in this study but in the 

appendix, we highlight some techniques that could help accomplish more balance.  
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6 Optimizing the intervention assignment 

Having at hand the key indicators calculated in the previous chapters, in this sixth section we bridge from the 

theoretical discussion to the applied field. More specifically, we outline how Humana can directly capture value from 

these indicators by creating an optimal targeted outreach plan. Exhibit 6-1 illustrates the resulting dataframe from 

the previous efforts. For every pair of member-intervention we have the cost of risk, hesitancy, cost of interventions 

and intervention effectiveness.  

EXHIBIT 6-1 

 

The only missing ingredient to compute the benefit of the intervention is the % of hospitalizations for patients 

vaccinated and not vaccinated, i.e. the highlighted terms in the following exhibit. 

EXHIBIT 6-2 

 

To this end, we have leveraged data from effectiveness (29-fold reduction in hospitalizations) and from monthly 

hospitalizations33 (360k at the time of the data gathering in March for the population of interest) to estimate the 

probabilities of hospitalization if not vaccinated and vaccinated at 0.8% and 0.03% respectively. With this last 

datapoint in hand, we compute the benefit of intervention for each pair of Humana member-intervention. Having 

the pairs member-intervention, benefit, and cost, we have formulated an optimization problem to maximize the 

captured benefit with the restriction of not exceeding a given cost and not assigning more than one intervention to 

the same member as defined in the next page. 

 

 

33 https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html  

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html


 

28 

EXHIBIT 6-3 

 

 

Where we basically want to find the values of x_ij which denote the choice of selecting intervention j for member I 

with the cost restrictions and the restrictions of only being able to choose either newsletter or digital reminder and 

one of the last 3 interventions at the same time. 

Once the optimization problem has been formulated as above, we have solved it with the open-source optimization 

package Pulp34 to find the results that will be analyzed in the following subsections. 

  

 

 

34 https://github.com/coin-or/pulp  

https://github.com/coin-or/pulp
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6.1 OPTIMAL ASSIGNMENT 

After executing the optimizer at different cost cutoff points, we retrieve the following graph which portrays the 

tradeoff between investing more capital against capturing benefits from the interventions. Each point has been 

calculated executing the optimizer described in the previous section with a different cost cutoff for the 805k 

members not vaccinated from the train set. 

EXHIBIT 6-4 

 

As one can note, from a certain point onwards the relative returns are diminishing yielding that the optimal 

breakeven point is at $22Mn. Setting this as our plan, $41Mn in risk revenue could be captured which would total a 

$19Mn in risk profit captured - we can double click to analyze which interventions we would actually be performing. 

In exhibit 6-5 we see that the first touch point would be mostly newsletter and that 8% of the members would not 

be intervened in the second touchpoint.  

EXHIBIT 6-5 

 

 

For all, we can conclude that our effort to quantify the benefit of each combination of member-intervention has 

yielded an optimized list of interventions to conduct that would capture an estimated $XXXMn at a cost of $XXXMn.  
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7 Appendix 

This seventh and last chapter of the study conveys very relevant content that did not find its way in the natural 

storyline of the previous chapters. From potential enhancements to some notes on the assumptions made to finally 

a reference to the codebase and bibliographic literature leveraged. 

7.1 APPROACH ASSUMPTIONS 

Throughout the development of the study different assumptions have been made to quantify the different elements 

of the benefit equation as below: 

EXHIBIT 7-1 

 

While hesitancy to get vaccinated comes directly from the proprietary Humana data, the other components have 

been estimated in an outside-in fashion and could be further refined – to reflect the present state, to include the 

particularities of Humana’s context and fine-grain them to be personalized, more precisely: 

 

▪ Linearity of contribution of effectiveness: While there might be many possible relations in which 

interventions affect the decrease of hesitancy, as a simplification we have assumed that it is linear with 

constant factors for each different intervention 

▪ External validity of the effectiveness estimates: While the effectiveness estimates of the different 

interventions have been pulled from other studies, they might not apply to this particular context or could 

be fine-grained. In order to have a more accurate proxy of these it would be necessary to conduct a 

randomized control experiment to see how different subpopulations would react to the different 

interventions  

▪ Only the costs come from hospitalizations: We are simplifying the approach to only consider 

hospitalization costs attributable to the health insurer – network effects, long term health loss and other 

factors are not accounted for 

▪ There are no restrictions to reach out to the population:  An underlying hypothesis throughout the study 

is that there is freedom to reach out and intervene on every possible member of Humana, this might not 

be possible since there could be limits to the number of times they are reached out, Humana does not have 

their contact information …  

▪ Fine-tune the cost of risk for Humana for each member: In this study we have mapped average 

hospitalization costs for different subpopulations – assigning an individualized cost of risk could improve 

the faithfulness of the final recommendation 
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7.2 POTENTIAL ENHANCEMENTS 

Besides refining the different elements from the benefit equation as describe din 7.1, in this subsection we itemize 

alternative possibilities to improve the results of the study by enlarging its scope: 

▪ Consider a rolling time period: Instead of having a fixed snapshot of the data and behavior of the 

members, a fixed time frame to train and to predict with  

▪ Consider more interventions: Include all the array of potential interventions that Humana can deploy 

▪ Relate the causes of not being vaccinated with the interventions: In this study we have treated the 

predictive task as an error-minimizing exercise but have not built the causal graph that would explain the 

reasoning behind not getting the vaccine. This graph could be created with field experts and additional 

data and would allow to map interventions to causes of hesitancy.  

Furthermore, as outlined in the WHO vaccination intervention guideline35, it does not suffice to execute 

interventions (steps 1-8 of their guideline) but a crucial feature of the success of any roll out is its continuous 

monitoring, in the following exhibit one can observe the steps that the WHO recommends following once a plan of 

our characteristics is launched. 

EXHIBIT 7-2 
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35 https://www.who.int/immunization/programmes_systems/policies_strategies/MOV_Intervention_Guidebook.pdf  

https://www.who.int/immunization/programmes_systems/policies_strategies/MOV_Intervention_Guidebook.pdf

