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Abstract

Recessions lead to substantial, yet not immediate drop in output. The low and of-
ten negative growth during recessions is typically followed by a steady recovery with
abnormally high growth. We propose a theory where a recession is preceded by the
introduction of a new risk source. The expected impact on economic growth of this new
risk is negative and varies in terms of duration and severity. Consistent with the data,
recovery is slow but characterized by higher than average output growth. We show
that the expected path of both risk premia and return volatilities are hump-shaped at
the start of a recession, that is, risk premia and return volatilities do not immediately
rise which is in contrast to most asset-pricing models. We calibrate the model to the
average economic recession and recovery and show that it quantitatively matches the
unconditional asset pricing moments as well as asset pricing moments during recessions.
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1. Introduction

Preceding a crisis, there is often a heightened awareness of new risks. Take, for instance,

the early days of 2020 when news emerged about a novel virus. Initially, this news did not

immediately trigger a crisis, as it remained uncertain whether the virus could be contained

or if it would evolve into a full-fledged pandemic. While people were already aware of the

presence of this new risk (the COVID-19 virus), there was still a lot of uncertainty about

what the consequences would be. The COVID-19 pandemic serves as a vivid illustration of

how an entirely new risk can disrupt the world, yet this awareness of new risks is not unique

to that particular episode. In Figure 1, we present Google search trends for ‘subprime’,

‘housing crisis’, and ‘mortgage crisis’, key terms associated with the global financial crisis.

This figure reveals that even prior to the onset of the recession, there was a notable surge

in interest surrounding topics related to what later became recognized as pivotal factors

contributing to the crisis.

(a) The Great Recession (b) The COVID-19 Pandemic

Figure 1: Awareness of New Risks. This figure displays the Google Trend word count for crisis
terms related to two distinct events: The Great Recession (a), The Covid-19 Pandemic recession (b). Data
comes from Google Trends, which starts in 2004.

Asset prices are forward-looking, reflecting agents’ expectations about future economic
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activity. It is therefore commonly assumed that the emergence of a new risk and the anticipa-

tion of an economic slowdown should be immediately reflected in asset prices. Consequently,

one might expect an immediate decline in asset prices upon the discovery of a new risk.

Yet, as data shows, asset prices are not falling immediately. Instead, recessions materialize

when bad news about the new risk unravels and a series of bad shocks materializes. This

is, however, not happening instantaneously, and hence we do not see an immediate drop in

economic activity.

In this paper, we study a general equilibrium model with crises that are triggered by the

introduction of the new risks. Specifically, we assume that aggregate output growth is i.i.d.

during normal times. At random times, the economy enters a potential recession state. Once

this happens, a new source of risk is introduced, and output is expected to drop temporarily.

The expected path of output growth is s-shaped, with a strong negative expected growth rate

initially, followed by a higher-than-average growth bringing the output back to the pre-crisis

level. Once the output reaches the pre-crisis level, the source of risk dies out. Hence, the

new risk source is only temporarily affecting the economy. We combine the above output

dynamics with a representative agent with external habit preferences in the spirit of Menzly

et al. (2004). This allows for a tractable framework with closed form solutions for asset prices

while at the same time delivering a high equity premium and realistic excess volatility.

We show that within our framework asset prices do not immediately react to the intro-

duction of new risks and the expected slowdown of economic growth. Instead, there is a

hump-shaped pattern in expected excess returns, i.e., risk premia are expected to temporar-

ily rise as the crisis unfolds and current risk premia are still low. Hence, the model generates

what seems to be a delayed reaction to the news about future economic activity.

We test our model on the Global Financial Crisis period. We match the model output

dynamics to the GDP data observed around the GFC, as shown in Panel a) in Figure 2.

Specifically, we calibrate the model to match three crisis-specific output moments: (i) the
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total drop in GDP level at crisis trough (observed in April 2008), (ii) how long it took

to reach the crisis trough, and (iii) how long it took to reach the pre-crisis output level.

Subsequently, we use these output dynamics, fine-tuned to the GFC episode, to project how

asset prices would unfold during this period. Panels b) to d) compare the model predictions

for the risk premia and return volatility with data.

(a) Matching GDP dynamics (b) Risk Premium: Marfè and Pénasse (2022)

(c) Risk Premium: Ian Martin’s lower bound (d) Realized volatility

Figure 2: GFC period – Implied asset-pricing moments: This figure compares the
model predictions (presented by blue dashed-dotted lines) with empirical observations (black solid lines).
We compare equity risk premia, measured using the Marfè and Pénasse (2022) index derived from stochastic
volatility and Martin (2017)’s lower bound on risk premium.

Our model’s predictions closely align with empirical evidence. The Marfè and Pénasse
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(2022)’s implied risk premium and the Martin (2017)’s lower bound on equity premium both

exhibit a pronounced hump-shaped trajectory. The observed return volatility likewise reveals

a distinct hump shape at the onset of the Global Financial Crisis (GFC).

A distinguishing feature of our model is the predictable hump-shape of asset-pricing

dynamics. This hump-shape pattern is not driven by any biases affecting expectations of

the representative agent. Instead, the hump shape is driven by the time series pattern of

expected volatility of output, which increases steadily during the first periods after a new

risk is discovered and then decreases when the new risk becomes irrelevant. The highest

expected returns is observed at the point where the expected volatility of output is also the

highest. Our model provides a potential rational explanation for the delayed reaction of

asset prices to recessions and expected future declines in output.

We propose a model with predictable asset prices during recessions. As the new risk

is introduced in the economy and future output is expected to temporarily decline, we

would expect to see interest rates reflecting this information. We show that similarly to

expected excess returns, there is only a moderate effect observed immediately in the short

rate. However, for intermediate maturities, there is a drop in the yield due to future lower

expected output growth and heightened volatility of output growth, both pushing yields

down. Hence, we see an inversion in the yield curve at the onset of the crisis. This inversion

of the yield curve predicts future decline in output growth and future expected excess returns.

The fact that the slope of the yield curve predicts future expected output growth sets our

model apart from the standard habit formation model where the yield curve is uninformative

about future output growth.

Given our external habit-formation preferences, the model can match the unconditional

excess return, the level of risk-free rate and the excess volatility. Importantly, we show that

the output process can capture the dynamics of recessions well. The model generates a

reasonable frequency, duration, and variability in the duration of recessions. We decompose
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the risk premia during recessions into the composition for the new source of risk and the

risk compensation for normal variation in the output. We show that while both sources of

risk demand higher risk premia during recessions, the new source dominates at the height of

the recession and becomes the main driver of the hump-shaped pattern in expected excess

return. We show that there is a similar pattern in the return volatility, i.e., most of the

excess volatility is driven by the new risk source at the height of the recession.

Our novel way of modeling crises is motivated by the output trends observed before and

after crises are announced. It typically takes the NBER committee at least two quarters to

announce that we have entered a recession. In most cases, output declines and economic

conditions deteriorate months before the official start date of each NBER crisis. Our ap-

proach of modeling crises and its impact on asset prices accommodates this pre-crisis trend

of deterioration. In our model, after each crisis event is triggered, it takes some time for

output to reach its minimum.

Our model is also consistent with the positive abnormal growth experienced during the

post-crisis recovery period. We first document, empirically, that post crises, i.e. after a

trough is reached, US output tends to grow abnormally fast. We measure abnormal growth

as the difference between the realized level of output growth and its 10-year average. When

this difference is positive, an ‘abnormal’ growth is observed as the economy grows faster than

average. Section 3 further summarizes our empirical observations of output and asset-pricing

dynamics around crises.

The proposed way to model the impact of crises on output is supported by existing

empirical evidence suggesting that recessions are periods of relatively large and negative

transitory fluctuations in output (Morley and Piger, 2012). Kim et al. (2005) use the model

of Hamilton (1989) to estimate the US business cycle dynamics. They identify a post-

recession ‘bounce-back’ in the level of aggregate output. They show that this ‘bounce-back’
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effect is large leading to small permanent effects of recessions on the US economy.1

This paper is structured as follows. Section 2 discusses the related literature. In Section

3, we document a number of empirical facts about the macroeconomy and asset prices around

crises. Section 4 presents the model and Section 5 the data used. We estimate the model

parameters in Section 6 and conclude in Section 7.

2. Review of Literature

Empirical facts. Recessions produce gradual and prolonged declines in consumption (Barro

and Ursua, 2008). This pattern extends to asset prices as well. As indicated by Muir (2017),

during crises, asset price movements often display a V-shaped trajectory. The cumulative

returns can dip by roughly 40%, yet a significant portion of this drop–about half–is typically

recovered in the following few years. A review of 42 recessions across 14 countries since 1951

reveals that both prices and dividends generally start their decline at the onset of a recession

and remain markedly low, even a dozen quarters post-recession (Kroencke, 2022).

The V-shaped and not instantaneous reaction of output (and other macroeconomic vari-

ables) to recessions is documented in numerous other studies. In particular, Basu et al.

(2021) pinpoints a shock responsible for a significant portion of the variations in the equity

risk premium. This output’s response to the identified VAR shock also exhibits a V-shaped

pattern.

Our model predicts a gradual and V-shaped pattern of output and price decline, followed

by a recovery period. In our model, the arrival of crises is exogenous. Supporting this, Jordà

et al. (2011) find it plausible that crises emerge unpredictably. They also note consider-

able variations in crises regarding their effects on output and consumption, as well as their

duration – features that our model effectively mirrors.

1Interestingly, when the same model is applied to other countries, Kim et al. (2005) report larger perma-
nent effects of recessions.
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Theoretical Perspectives on Recessions and Risk Premia. Kroencke (2022) shows

that innovations in expected returns are highly volatile during recessions and illustrates

that these facts are difficult to explain within standard asset pricing theories. Simulating

“recessions” using frameworks like the Bansal and Yaron (2004) long-run risk model, the

Campbell and Cochrane (1999) habit model, and the Wachter (2013) model of rare disasters,

he observes that none of these models adequately capture the observed variances in stock

prices or price changes.

Risk premia are substantially higher in recessions than in expansions (Muir, 2017; Lustig

and Verdelhan, 2012). Muir (2017) adds that risk premia spike dramatically in financial

crises, defined specifically as a banking panic or banking crises, but rise only modestly

in recessions or wars. Muir (2017) argues that standard consumption-based asset pricing

models fail to reconcile these facts because the overall drop in consumption and increase in

consumption volatility is fairly similar across financial crises and recessions and is largest

during wars.2

Nakamura et al. (2013) estimate an empirical model of consumption disasters, which

generates an equity premium from disaster risk that is substantially smaller than in disaster

models. They conclude that an unrealistically large value of the inter-temporal elasticity of

substitution is necessary to explain stock-market crashes at the onset of disasters. Gourio

(2012) introduces time-varying disaster risk into a standard real business cycle model, which

is also able to generate a V-shaped reaction of macroeconomic variables and asset prices. His

approach, however, relies on leverage to generate volatility of cash flows and returns, and it

does not address the volatility of the unlevered return on capital.

Ghaderi et al. (2022)’s model of slowly unfolding disasters relies on information processing

2More recent literature offers clues on the potential mechanism driving the higher expected returns
observed during recessions. Ai and Bhandari (2021) show that when idiosyncratic risk to human capital is
not fully insurable, the anticipation of lack of risk sharing in the future can raise workers’ current marginal
utilities during recessions.
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to explain the gradual response of asset prices to economic shocks. In their model, agents

learn about the time-varying consumption jump intensity, which increases during disasters.

In their framework, recognizing a sustained transition to a recessionary state can cause an

extended duration of the effects that stem from disasters.

The post-crisis period is associated with an abnormally high economic growth, also re-

ferred to as the ‘bounce-back effect’ in level (Nakamura et al., 2013; Kim et al., 2005).

Classical asset-pricing models, including the Ghaderi et al. (2022)’s slowly unfolding disas-

ters model, do not generate this ‘recovery’ period. Beeler et al. (2011) show the long-run risk

model produces persistence but not mean-reversion in the level of consumption. Hasler and

Marfe (2016) highlight the importance of recoveries that follow disaster events in explaining

the observed shape of the term structures of equity return.

Our model contributes to the existing literature studying the relationship between crises

and their ensuing impacts on asset prices and economic activity. Using a novel general equi-

librium model, we explain why asset prices do not immediately respond to the introduction

of new risks, even if there’s an anticipated economic slowdown. Our model predictions are

able to quantitatively match the asset price reactions, which manifests in a hump-shaped

pattern of expected returns and return volatility. The paper sets itself apart from other

existing theories by demonstrating that the model can mirror actual recession dynamics,

both in terms of changes in observed levels of output and risk premia.

3. Empirical Facts

In this section we discuss empirical stylized facts of output and asset prices during different

phases of the business cycle.
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3.1 Growth dynamics around crises

In Figure 3, we visualize the evolution of the US output over the past seventy years and notice

that recession periods have had a substantial impact on output dynamics. Recessions led

to strong swings creating large economic output gaps. Crises produce significant economic

dislocations resulting in sudden drops in total output produced. We do not notice similar

upswings, e.g. positive shocks of similar magnitude, in output leading to higher than average

production growth that would lead to production strongly exceeding potential output. In

other words, US output dynamics and the business cycle are strongly asymmetric and driven

by negative shocks.

(a) Output Level (1949-2021) (b) Output Growth (1949-2021)

Figure 3: Real GDP per capita (1949-2021) Panel (a) displays the evolution of the quarterly
real and potential output in the United States (real, per capita) between 1949 to 2021. In panel (b), the
figure shows the year-on-year change in the quarterly GDP and potential output (the blue and dashed black
line, respectively) as well as the 10-year average total GDP growth rate (yellow line). Shaded areas represent
NBER recessions.

This asymmetric feature of macroeconomic data was first documented by Neftci (1984).

Given the importance of these negative economic shocks, the majority of academic audience

has focused on identifying and studying recessions, which has also been the main point of

attention of the National Bureau of Economic Research methodology.
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The period since 1990s has been associated with moderate growth, as compared to growth

before 1990s. Fernald (2015) attribute this change in trend to the mid-2000s slowdown in

labor-productivity growth. Nevertheless, despite this moderate positive growth in normal

times in the post-1990s era, we continue to observe that negative shocks realized around

NBER recessions dates continue to have a substantial impact on output dynamics.

(a) Abnormal growth (1949-2021) (b) Abnormal growth around crises

Figure 4: Abnormal output growth (1949-2021). The figure displays the level of abnormal
growth measured as the difference between the realized annual growth rate of the real GDP per capita and
the 10-year historical average output growth. Figure on left describes the time series evolution of abnormal
growth from January 1949 until December 2021. Shaded areas reflect NBER recessions. Figure on right
shows the average evolution of abnormal growth around crisis trigger dates, i.e. it displays the aggregated
average abnormal growth levels up to six quarters before and after the beginning of each NBER recession.
The wide transparent blue bars represent the aggregate average dynamics. The narrow bars in color describe
the individual NBER crisis observations that are covered in our sample.

After each recession, we observe a distinct phase where the economy returns back to

normal levels. This trend is called ‘recovery.’ We observe that realized output catches up to

potential output relatively fast after the crisis hits, perhaps except for the sluggish recovery

from the Great Recession (Sufi et al., 2021). After most of past crises depicted in Figure 3,

real output catches up to potential output within a few years. To be able to more accurately

assess whether there is abnormally high growth post crises, we estimate a 10-year historical

average growth rate and compare post crisis growth with this benchmark. You can see the
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10-year average growth highlighted in yellow on the right plot from Figure 3.

We measure abnormal growth as the difference between actual growth rate in a given

quarter from the 10-year historical growth. When abnormal growth exceeds zero, output is

said to grow at a higher than expect rate. Figure 4 displays the time-series evolution of this

abnormal growth. You may notice that post-crises, this abnormal growth rate tends to be

high and positive while just before a crisis hits or is identified, this abnormal growth is low

and negative.

We aggregate all the pre- and post-crises periods together and compute the average

abnormal growth rate level for up to six quarters before crisis is identified and up to six

quarters after. This aggregated pre- and post-crisis trend of abnormal growth is shown in

Figure 4 on the right side. The red circle highlights this gradual drop decline in abnormal

growth that precedes the official starting dates of NBER recessions. Post crises, as circled

in green, abnormal growth becomes positive.

Bordo and Haubrich (2017) confirm that most US recessions are followed by rapid re-

coveries, with three exceptions: the recovery from the Great Contraction in the 1930s, the

recovery after the recession of the early 1990s, and the recovery from Great Depression.

3.2 Crisis heterogeneity

Looking back at past crises since the Great Depression highlights how much each crisis differs

from one another. NBER recessions exhibit noticeable differences in duration and severity

measured by the total peak to trough decline in GDP. Crisis duration ranges from two months

(COVID-19 pandemic crisis) to almost four years (Great Depression). Crisis duration is not

a good proxy for the total economic impact. Even short crises can do substantial damage to

the economy, as we have recently experienced during the COVID-19 pandemic, which led to

more than 19% of total output destroyed.

We argue that heterogeneity in crisis events is another important aspect of any success-
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Figure 5: NBER recession characteristics. The figure displays the durations (in months) and
severity (measured as the total GDP decline) of all NBER crises from the Great Depression until now.

ful asset-pricing model. More damaging crises are likely to affect asset prices more severely.

Moreover, the output dynamics with heterogeneous (i.e. crisis-specific) speed of mean re-

version after an economic shock is realized should impact the dynamics of factors that are

pricing assets in our economy.

3.3 Asset prices around crises

How do asset prices respond to recessions? We show, in Figure 6, that risk premia increase

after recessions are announced. We use the implied lower bound on equity risk premium

estimated by Martin (2017). This data is only available from 1996 to 2021. There are two

NBER recessions occurring during this period, the 2000s Dot-com bubble crisis and the

Great Recession. While the response of risk premia to the Dot-com bubble crisis of 2000s

was relatively modest to almost non-existent, risk premia spiked and more than tripled

in size post the Great Depression. This widely different reaction of risk premia to these

two crisis events highlights the urge of incorporating the crisis-heterogeneity assumption in

asset-pricing models.

Return volatility, measured using VIX, increase substantially after (and during) the Great
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(a) Risk premia (1996-2012) (b) Risk premia around crises

(c) VIX (1990-2021) (d) VIX around crises

Figure 6: Asset prices around crises. The figure displays the risk premia, measured using the
Martin (2017) implied lower bound on equity premia, and return volatility, measured using the VIX index.
We plot the development of the monthly levels of risk premia (Figure a) and VIX (Figure b) overt time, as
well as the conditional levels of risk premia and VIX in months before and after NBER crises (in Figures
(b) and (d), respectively). The wide transparent bars represent the aggregate dynamics before and after
NBER crisis start dates. The narrow bars in color describe the individual NBER crisis observations that are
covered in our sample.
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Depression crisis and the COVID-19 pandemic crisis. VIX data is available from 1990, which

covers four NBER recession periods. When we aggregate over these four recession periods

and estimate the average levels of VIX in months before and after a crisis hits, we see that

VIX tends to peak shortly before the official starting date of a recession and continues to

stay higher than average (black horizontal line) for up to two years after.

Empirical evidence suggests that asset prices, in a similar fashion to output, do not

react immediately to crisis shocks. It takes several months for both risk premia and return

volatility to spike. After that, they relatively slowly revert back to its steady states. This

evidence is inconsistent with regime-switching types of crisis models, where the switch in

and out of crises happens instantaneously.

4. The Model

This section introduces a continuous time exchange economy with a representative investor

with external habit forming preferences and derive equilibrium asset prices.

4.1 Output

The main departure of our model from the standard asset pricing frameworks is how we

model the output process. Specifically, we assume that total output can be decomposed in

the following way

Yt = Ŷtηt, (1)

where Ŷt is governing how output evolves during normal times. Ŷt can be viewed as potential

output, which is achieved under normal economic conditions when firms operate at full

capacity. We assume that the potential output evolves as a standard Geometric Brownian
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Motion. Specifically,

dŶt = µŶ Ŷtdt + σŶ ŶtdzŶ ,t. (2)

We introduce ηt, which affects actual realized output Yt and plays a role of a “crisis”

variable that takes the value of 1 during normal times, but is less than one during crisis

times. The crisis variable, ηt = ηt (st), is a stochastic variable whose values depend on the

continuous time process st that can take two values st ∈ {H,L}. When st = H, then ηt = 1,

i.e., we are in normal times. The transition from the normal state, st = H to the bad state

st = L is determined by an exponentially distributed random variable with intensity ν. When

st = L we are in bad times.

If the economy enters the bad state at time s then ηt follows the process

dηt = κη (xs,t − ηt)dt + σηηt (λ − ηt)dzsη,t, (3)

with λ > 1 and ηs = 1 for s ≤ t < τ where τ is the first time after s for ηt to exit (0,1).

The random time τ denotes the return to the normal state, i.e., sτ = H. The ηt process is

catching up to a deterministic variable xs,t.

There are several things to note about the process in Equation (3). First, when the

economy enters the crisis state st = L, a new Brownian motion, zsη,t, emerges. Hence, the span

of the assets required to complete the market changes. Second, the local output volatility

jumps at the time of entering the bad states since we assume that λ > 1. Note that the

volatility is locally constant when the economy is in the good state, but becomes stochastic

in bad (crisis) states. Finally, ηt is mean-reverting towards the process xs,t, where xs,t is

given by

xs,t = 1 + (e−κ1(t−s) − e−κ2(t−s)) ϵs (4)
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with 0 < κ1 < κ2 and ϵs is a random normal variable with mean ϵ̄ and variance σϵ.3 The

process xs,t starts at one, and is initially increasing if ϵs > 0 and decreasing if ϵs < 0, but then

reverts back towards 1 in the limit. Hence, the process xs,t exhibits a U-shaped pattern.

This captures the notion that there is a temporary destruction of output during bad times,

but eventually the output growth catches up which leads to a higher than average growth

rate for a period of time. We do not model permanent destruction of output through our ηt

process. Since we are interested in the case when xt is decreasing at first, we assume that

the initial shock that switches the crisis regime on is negative, i.e. ϵ̄ < 0. As we show below,

this random shock, ϵs, at the start of the bad state determines both the expected length and

the expected severity of the recession.

Figure 7: Crisis trigger and output reaction. The figure shows the deterministic crisis-trigger
variable xs,t (the red line) that responds to an initial shock ϵs− = 0.4. The output reaction to the crisis is
represented by ηt (blue line). The shaded area represents the confidence bands for the simulated η paths.
To create these plots, we assume that ϵs = −0.4, κη = 1.5, λη = 1, ση = 0.5, κ1 = 0.8 and κ2 = 5.

The U-shaped pattern of xs,t and the fact that ηt catches up to xs,t implies that both ηt

3As ϵs is a normal random variable the minimum of xs,t could in principle be negative and therefore ηt
can be negative as well. In our simulations this never happens. Moreover, one could instead consider an
augmented process x̄s,t = max (x, xs,t) where xs,t is as above and 0 < x < 1. This is reminiscent of shadow
rate models in the term structure literature.
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and the aggregate output tend to follow the same pattern. Figure 7 shows xs,t (the red line)

and the average paths of ηt (the blue line with shaded areas defining its 5%-95% confidence

bands). In the proposed model, output, affected by η, responds to the crisis variable xs,t

with a delay.

This delayed reaction of output is chosen on purpose to fit the dynamics of output around

crises. In data, we observe that the drop in realized output is not instantaneous. In fact,

in Figure 4 we show that the abnormal growth, which measures the difference between the

realized GDP growth and a 10-year historical average GDP growth, drops in a gradual

manner. This gradual drop in output growth is followed by the ‘bounce-back’ effect, where

the abnormal growth becomes positive. Both features of the aggregate output data are

consistent with our model.

Figure 8: Crisis trigger and output reaction for different levels of ϵs. The figure
shows the plot of xs,t (in red on left) and ηt (in blue on right) for different levels of ϵs: ϵs = {−0.05,−0.4,−3}.
Shaded areas around ηt represent 5%-95% confidence bands. The remaining parameters are chosen to be
the same as in Figure 7.

The size of the initial shock ϵs affects both the crisis variable xs,t as well as ηt. We

plot the dynamics of these two variables for three initial levels of the initial shock: ϵs =
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{−0.05,−0.4,−3}. Figure 8 shows that a larger initial shock, i.e., a lower ϵs implies both a

more severe and a prolonged recession. The reaction of xs,t to the initial crisis shock is much

more severe than the reaction of ηt. This is not surprising given that ηt is stochastic and has

to catch up to xs,t, which takes time. The higher the speed of the mean reversion parameter

κη, the closer ηt follows xs,t.

Next, we analyze the impact of different values of the speed of the mean reversion param-

eter κη, which measures how fast η catches up to xs,t. We set κη to 0.5 and 3 and examine

how it affects the output response η in Figure 9. We assume that ϵs = −0.4. A low κη of 0.5

implies a relatively slow recovery process while a κη of 3 makes η resemble the path of xs,t

much closer with less of a delay.

Figure 9: ηt and xt for different levels of mean reversion: κη. The figure shows the plot
of xs,t and ηt for different levels of κη: κη = {0.5,3}. Shaded areas around ηt represent 5%-95% confidence
bands. The remaining parameters are chosen to be the same as in Figure 7.
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4.2 Asset markets

The agents can trade an instantaneously risk-free asset with dynamics

dBt = rtBtdt (5)

and a claim to aggregate output with dynamics

dSt + Ytdt = St (µR,tdt + σR,Ŷ ,tdzŶ ,t + σR,η,tdzη,t) . (6)

We have used the term dzη,t to denote the Brownian shock introduced during each crisis.

Strictly speaking there is a new Brownian motion introduced for every new recession. We

choose to focus primarily on the impact of a new crisis without mixing any other crisis events.

The real short rate, rt, and the coefficients of the stock market, µR,t, σR,Ŷ ,t and σR,η,t are

determined in equilibrium. We define the instantaneous return process as

dRt =
dSt + Ytdt

St

= µR,tdt + σR,Ŷ ,tdzŶ ,t + σR,η,tdzη,t. (7)

4.3 Preferences

There is a representative agent with a lifetime utility given by

U (C,H) = E0 [∫
∞

0
e−ρt log (Ct −Ht)dt] (8)

where Ht is an external habit to be specified later. The agents maximize their lifetime utility,

subject to the dynamic budget condition

dWt = ((rt + πt (µR,t − rt))Wt −Ct)dt + πt (σR,Ŷ ,tdzŶ ,t + σR,η,tdzη,t) , (9)

20



where πt is the fraction of wealth invested in the stock market. In equilibrium, we have to

satisfy the conditions ϕt = 1 and Ct = Yt, for the markets to clear. Instead of considering

the dynamic optimization above, we can instead solve the static problem of maximizing the

lifetime utility subject to the static budget constraint

E0 [∫
∞

0
MtCtdt] =W0 = S0. (10)

The first order condition yields

Mt = e−ρt
1

Ct −Ht

, (11)

which is the standard stochastic discount factor with external habit preferences and log-

utility. We follow Menzly et al. (2004) and model the inverse surplus consumption ratio

as

Rt =
Ct

Ct −Ht

. (12)

Using the conditions specified above and imposing market clearing we obtain the marginal

utility given by

Mt = e−ρt
Rt

Yt

. (13)

As in Menzly et al. (2004), the dynamics of the inverse surplus consumption ratio, Rt, are

dRt = κR (R̄ −Rt)dt − α (Rt − λR) (
dCt

Ct

−Et (
dCt

Ct

)) , (14)

where κR is the speed of mean reversion of the habit process and α and λR are both positive

constants affecting the volatility of the external habit dynamics. Note that unlike a model

with i.i.d. output growth, one could argue that the process (14) is not a good approxi-

mation to a model with a habit that represents an exponentially weighted average of past

consumption. Instead, the long-run mean R̄ should depend on the expected output growth

21



and hence xs,t, increasing the inverse surplus consumption ratio during times of low expected

consumption growth. By not including this in the dynamics of Rt we shut down this effect

on the risk tolerance of the representative agent.

4.4 The stochastic discount factor

As illustrated in equation (13), the stochastic discount factor takes the usual form with

external habit. An application of Ito’s lemma gives us the market prices of risk and the real

short rate.

Proposition 1. In equilibrium the real short rate, rt, is

rt = ρ + µŶ − σ2
Ŷ
+ κR (1 −

R̄
Rt

)

+κη (xt/ηt − 1) − σ2
η (λ − ηt)

2 − α(1 − λR
Rt

)(σ2
Ŷ
+ σ2

η (λ − ηt)
2) (15)

and the market price of risk for the normal shock is

θŶ ,t = σŶ (1 + α(1 −
λR
Rt

)) . (16)

The market price of the shocks to η for s < t < τ , where s is the time of a transition from the

good to the bad state and τ is the end of the bad state, is

θη,t = ση (λ − ηt) (1 + α(1 −
λR
Rt

)) (17)

and it is zero when the economy is in a good state, i.e. when st =H.

The market price of output risk is unaffected by crises, see Figure 10.

The market price of the new crisis (η) risk switches on from zero when a crisis is triggered,

as shown in Figure 11, panel (a)). Figure 12 illustrates the relative importance of the two
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(a) Crisis vs. Normal State (b) Evolution in Crisis State

Figure 10: Market price of output risk. The figure shows the market price of output risk
(θY ) in a crisis and a normal state for different levels of the consumption surplus ratio (panel (a)) and its
time-series evolution in a crisis state (i.e. when ηt < 1). Parameters used to create this Figure are the
following: µY = 0.03, σY = 0.0202, ρ = 0.02, κR = 0.1, λ = 22, R̄ = 34, α = 25.125. The figure in panel (b)
considers a crisis shock of ϵs = −0.2, κη = 0.5, λη = 1.02 and the time series starts from its steady state.

(a) Crisis vs. Normal State (b) Evolution in Crisis State

Figure 11: Market price of η risk. The figure shows the levels of the market price of η risk
(θη) in a crisis and a normal state for different levels of the consumption surplus ratio (panel (a)) and its
time-series evolution in a crisis state (i.e. when ηt < 1). Parameters used to create these two figures are
described in Figure 10.
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Figure 12: Market price of risk decomposition. The figure shows the decomposition of the
two market prices of risk in a crisis state (i.e. when ηt < 1). Parameters used to create these two figures are
described in Figure 10.

components forming the total market price of risk. We can see that when the economy enters

a crisis state, the market price of risk starts to steadily (not instantaneously) increase. This

steady increase of the market price of risk is driven purely by the newly existing price of η

risk. In normal times, the market price of risk is fully determined by the output risk.

Importantly, the market price of risk follows a hump-shaped pattern. The dynamics of

the η process govern the values of the market price of risk to first increase steadily, until

it reaches a highest point, from which is slowly reverts back to solely reflect the price of

output risk. This hump-shape pattern found in the market prices of η risk is a new feature

of this asset-pricing model, which brings new relevant testable implications for conditional

asset returns around crises.

Entering a crisis state also affects real risk-free rates. To be able to distinguish between

the pure impact of a crisis on the instantaneous risk-free rate, we decompose the real rate

rt, derived in (15), into three components:

(i) the constant component: rA = ρ + µŶ − σ2
Ŷ
,

(ii) the ‘habit’ component: rB = κR (1 − R̄Rt
), and
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(iii) the crisis component: rC = κη (xt/ηt − 1) − σ2
η (λ − ηt)

2 − α (1 − λR
Rt
) (σ2

Ŷ
+ σ2

η (λ − ηt)
2).

The risk-free rate is equal to the the sum of the three components, that is, rt = rA + rB + rC .

Figure 13 shows the evolution of all three components of the risk-free rate in time, since the

initiation of a crisis state, which occurs at time 0.

Figure 13: Real short rate. The figure shows the time-series evolution of the equilibrium risk-
free rate and its individual components in a crisis state, i.e. when s < t < τ . The total risk-free rate,
rt, is in blue. This risk-free rate can be decomposed into three components: rt = rA + rB + rC , where rA
(in black) is the constant component: rA = ρ + µŶ − σ

2
Ŷ
; rB (in green) is the ‘habit’ component: rB =

κR (1 − R̄Rt
); and rC (in red) is the crisis component of the risk-free rate: rC = κη (xt/ηt − 1) − σ2

η (λ − ηt)
2 −

α (1 − λR
Rt
) (σ2

Ŷ
+ σ2

η (λ − ηt)
2).

The crisis component of the real rate is negative upon impact of a crisis. It steadily

decreases over the next couple of periods and then increases until it converges to zero as the

η risk becomes irrelevant for asset prices.

4.5 The stock market

The equilibrium stock price is given in the next proposition.

25



Proposition 2. The equilibrium stock price is

St = Ytϕt (18)

where the price-dividend ratio, ϕt, is

ϕt =
1

ρ
( R̄
Rt

+ ρ

ρ + κR
(1 − R̄

Rt

)) (19)

The price-to-dividend ratio does not react to the crisis variable ηt because the inverse

surplus consumption ratioRt is assumed to be independent of ηt. We choose this conservative

approach that does not rely on introducing potentially unrealistic increases in agent risk

aversion, which would be obtained through shocks to the inverse surplus consumption ratio.

In this model, the inverse surplus consumption ratio remains unchanged when a crisis hits

and all asset-pricing responses are purely driven by the impact of the crisis variable ηt on

output.

Proposition 3. In equilibrium, the expected stock market return is

µ̂R,t = rt + θŶ ,tσR,Ŷ ,t + θ̂η,tσR,η,t, (20)

where

σR,Ŷ ,t = σŶ VR,t (21)

and

σR,η,t = σηηt (λ − ηt)VR,t (22)

with

VR,t = 1 +
⎛
⎝

κR
R̄
Rt

ρ + κR R̄Rt

⎞
⎠
α(1 − λR

Rt

) . (23)
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(a) Risk Premium: Crisis vs. Normal State (b) Risk Premium: Evolution in Crisis State

(c) Return Volatility: Crisis vs. Normal
State

(d) Return Volatility: Evolution in Crisis
State

Figure 14: Equilibrium risk premium and return volatility. The figure shows the
equilibrium levels of risk premia and return volatility in a crisis and a normal state for different levels of the
consumption surplus ratio (panel (a) and (c)) and its time-series evolution in a crisis state, i.e. when ηt < 1,
(panel (b) and (d)). Parameters used to create these two figures are described in Figure 10.

27



(a) Risk Premium (b) Return Volatility

Figure 15: Decomposition. The figure shows the decomposition of the equilibrium risk premium
(panel (a)) and return volatility (panel (b)) into the two components drive by output (blue) and η risk
(orange). Parameters used to create these two figures are described in Figure 10.

4.6 The bond market

The n-maturity bond yield yt,n is derived from the price of the risk-free bond Bt,n that pays

$1 in n years.

Bt,n = Et (
Mt+n

Mt

) = e−yt,n×n, (24)

which gives the implied yield of

yt,n = −
1

n
ln(Et (

Mt+n

Mt

)) = ρ − 1

n
ln( Yt

Rt

Et (
Rt+n

Yt+n
)) . (25)

In Figure 16 we plot the yield curve during normal times and at the onset of recessions

for three different values of ϵ. From the figure we can see that the yield curve is u-shaped

with the lowest value around the peak of the recession. Hence, in our model the yield curve

contains useful information about future consumption growth, expected returns and future

return volatility. This is the case even thought the immediate reaction of the stock price is

limited. Moreover, the fall in intermediate yields is larger when the recession is expected to

be deeper and last longer.
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Figure 16: The Yield Curve. The figure shows the equilibrium yield curve at during normal times
and at the beginning of a recession with ϵ ∈ {−0.05,−0.4,−1}. Remaining parameters used to create this
figure are described in Figure 10.

Bekaert, Engstrom, and Ermolov (2021) show that macro risks, which include GDP

growth shocks, are related with the term structure of interest rates. They document that

macro risks contribute to the changes in bond yields and their risk premiums. Ang et al.

(2006) add that short rate has a strong predictive power to forecast GDP, which is consistent

with our model.

US Treasury yields observed during the first months of 2020 are strikingly similar to

what the model suggests. In January 2020, the yield curve was relatively flat and mildly

upward sloping. In February 2020, one month before the US declared a national emergency

due to the global COVID-19 outbreak, the yield curve starts to invert at short maturities.

In following months, real short rates drop dramatically due to FED rate cuts.
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(a) US Treasury Yields: 2020 (b) Treasury Yield Curve: First Quarter of 2020

Figure 17: The Yield Curve. The figure on left (panel (a)) show the development of US
Treasury bond yields with one-month, five-year and ten-year maturities. The figure on right (panel
(b)) shows the average bond yields for US Treasury bonds with maturities spanning from one month
to 10 years, observed in months of January, February, March and April 2020. Data comes from the
US Department of Treasury: https://home.treasury.gov/policy-issues/financing-the-government/
interest-rate-statistics?data=yield.

5. Data

Aggregate Data. The quarterly real GDP per capita produced between 1949 to 2019 is

collected from FRED, the Federal Reserve Bank of St. Louis database. We use consumption

data published by the U.S. Bureau of Economic Analysis. We collect annual levels of personal

consumption expenditures per capita (PCE) retrieved from FRED, observed between 1929

to 2019. We consider the aggregate PCE of non-durable goods and services. We convert the

nominal PCE values to real quantities using the PCE deflator from FRED. We compute the

aggregate output/ consumption growth as the annual PCE log-growth rate of the real PCE

quantities. Real industrial production data (INDPRO) also comes from FRED.

We use the NBER crises dating methodology and collect information on all crises from

1929-2020. There are 15 recognized NBER crises observed between 1929-2020 and the aver-

age NBER crisis duration for this period is 1.11 years (or 13.29 months). Over this period,

17.55% of months were identified as NBER crisis months.
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Asset Prices. Market-wide return data covering the period of 1929 to 2019 comes from

the Kenneth French’s website and CRSP (NYSE/AMEX/NASDAQ Index Stock File). We

collect information on the market excess return and the annual risk-free rate and convert

them into real quantities using the PCE deflator.

We use the Martin (2017)’s lower bound on market risk premia as a proxy for risk premia.

This data is downloaded from Ian Martin’s website and it covers years 1996 to 2012. The

CBOE Volatility Index (VIX) data comes from FRED Economic Data, covering 1990 to

2021.

Google Trend Data. Lastly, we measure the perception of new priced risks using Google

Trend Data, which starts in 2004. We search for the following terms to demonstrate the

awareness of new risks that surround each recorded NBER recession that occurred since

2004, see Table I. These google search terms are displayed in Figure 1 in the introduction.

Google Trend Search Terms

Table I: This table lists all Google Trend search terms used to measure risk awareness of
Google users.

Crisis event Google search term

COVID-19 Recession

pandemic
virus
corona
Wuhan
recession

Great Recession

subprime
housing crisis
mortgage crisis
recession

high inflation in 2022
inflation
recession

Russian invasion of Ukraine
Ukraine
invasion
recession
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6. Parameter Estimation

There are 15 model parameters that we choose to match 17 moments in the data. The 17

data moments are presented in Table III. For any set of parameters we calculate the model

implied moments by simulating 1,000 paths of 10,000 years of monthly observations. To

determine the estimation error we compute a weighted average of the squared difference

between moments implied by the model and the data. We chose volatilities as weights, e.g.

to determine the error contribution of the mean and volatility of excess stock returns we

scale the squared error for both by the volatility of excess stock returns. The parameters

that minimize the estimator error are given in II. The estimation results are robust to many

different choices of starting values.

Estimated Parameters: SMM

Table II: This table reports the 15 parameters of our model. These parameters are
estimated using the SMM procedure designed to match the 17 moments of the data given in
Tables III and IV.

Parameter Value Parameter Value

µY 3% ϵ̄ 0
σY 2% σϵ 0.1
νREC 0.25 κR 0.1
κη 0.5 R̄ 42
ση 0.5 α 25
λη 1.02 λR 22
κ1 5 ρ 0.02
κ2 0.8

The unconditional moments we match are computed using all data available in our sam-

ple, which described in more detail in Section 5. We are matching the average real consump-

tion growth rate and its volatility observed between 1929 and 2020. Average real market

return and real risk-free rates is computed using data from 1929 to 2020.

We use the officially declared NBER months to determine the average crisis duration,

which is more accurate than if NBER years were used to compute crisis duration since crises
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Unconditional moments

Table III: This table lists the values of the matched unconditional moments simulated
using the model and observed in data. Annual excess stock market returns and real risk-free
rate for the period 1929 to 2020 are used to compute mean and volatilities. Real consumption
growth and its volatility is estimated using the annual real gross domestic product per capita
observed between 1929 and 2020. We use the NBER crisis monthly methodology to determine
average crisis duration, its standard deviation and crisis occurrence. Crisis occurrence is
based on post-war data: 1950-2021.

Model Data

Average excess stock return 4.12% 5.49%
Excess stock return volatility 17.12% 20.40%
Average real risk-free rate 2.46% 0.51%
Real risk-free rate volatility 3.35% 3.74%
Average consumption growth 2.12% 2.00%
Consumption growth volatility 2.31% 2.14%
Average recession duration (years) 0.73 0.98
Recession duration volatility (years) 0.90 0.75
Recession occurrence 7.98% 14.73%

do not have to cover entire years. We also consider the standard deviation of crisis duration

and crisis occurrence when estimating our model parameters. The crisis occurrence is based

on post-war data: 1950-2021. The observed recession occurrence, 14.73%, represents the

ratio of all NBER crisis months relative to all months observed between 1950 to 2021.

Conditional moments are measured using the same annual data. Conditional moments

focus on crisis years declared by the NBER as recession years or non-crisis or normal years,

defined as years where the yearly NBER recession indicator equals 0. For instance, the mean

and standard deviation of output growth and excess returns are computed conditional on

the NBER annual crisis variable being 1 for the Crisis state and 0 for the Non-crisis state.

6.1 Matching output dynamics during the GFC period

In this section, our goal is to calibrate the model to match the GDP dynamics observed

during and after the Global Financial Crisis (GFC), that is the period from April 2008 to
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Conditional moments

Table IV: This table reports the conditional counterparts of moments matched in our
SMM estimation. We match the conditional real consumption growth, its volatility, the
average excess stock return and its volatility observed during crises when NBER = 1 or in
normal times, when NBER = 0.

Crisis (NBER=1) Non-crisis (NBER=0)
Model Data Model Data

Average consumption growth -7.85% 0.23% 2.98% 5.87%
Consumption growth volatility 3.50% 8.32% 2.00% 2.59%
Excess stock return 7.321% -18.99% 3.84% 10.16%
Return volatility 22.50% 19.75% 16.65% 17.09%

January 2017. To achieve this, we estimate parameters that drive the crisis factor ηt and

the crisis trigger xt, which play a pivotal role in driving output during a crisis in our model.

Subsequently, we employ these estimated parameters to predict asset prices. We deliberately

avoid using asset pricing data in the estimation. This approach allows us to test our model’s

capability to generate meaningful asset-pricing insights without being explicitly tailored to

match them.

We match three crisis-specific moments: (i) the cumulative GDP contraction, quantified

at the lowest point of the crisis; (ii) the number of years it takes to hit the crisis trough, as

measured from the start date; and (iii) the number of years it takes the GDP level to hit

the pre-crisis level. Figure 18 highlights these three matched moments for the GFC period.

We employ estimate the six parameters by using the Simulated Method of Moments, as

outlined in Table V. For every parameter set, we compute the model-implied crisis-specific

moments by simulating 1,000 paths of 10 years’ worth of quarterly GDP data. The estima-

tion error is determined by computing a weighted mean of the squared differences between

the moments implied by the model and the empirical data.4 Notably, we adjust the weight

4To enforce constraints, such as ensuring volatility parameters are non-negative, we increase the estimation
error significantly if the algorithm selects parameters that breach these constraints.
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Figure 18: Matching GDP dynamics observed during the GFC period This figure
displays the quarterly level of US real GDP per capita, indexed to 1 in April, 2008 (black line). The blue
dash-dotted line represents the fitted output data, which is the result of our SMM estimation. The SMM
targets the minim output level (the dotted red line), the duration from the crisis start date to crisis trough
and the duration from the crisis start date to the date when the pre-crisis GDP level is reached. These dates
are highlighted by the vertical solid lines.

given to the first moment by a factor of 1000 to ensure that all three moments contribute

equally to the estimation error.

We use the Matlab function fminsearch to find the set of parameters that minimize

the estimation error. We execute this SMM procedure 100 times. The initial parameters

for the first SMM are aligned with those derived from the SMM estimation targeting the

unconditional sample, as presented in Table II. Each subsequent SMM estimation builds on

the estimated parameters from the previous SMM estimation. This allows us to verify the

robustness and reliability of our parameter estimates.

From the 100 parameter vectors derived through SMM estimation, we select the one

with the minimal estimation error. The model-predicted output level, resulting from our

SMM estimation, is depicted as the dash-dotted blue line in Figure 18. Table V presents the

estimated values of the six parameters that help us match output dynamics observed during
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Estimated Parameters for the GFC period: SMM

Table V: This table reports the 6 parameters we estimated to match the output dynamics
observed during the GFC period.

Parameter Estimated Value Description

κ1 6.4502 Persistence of crisis trigger xt

κ2 0.77377 Persistence of crisis trigger xt

κη 1.3219 Persistence of crisis factor ηt
ση 0.5384 Volatility of crisis factor ηt
λη 1.0355 Volatility bound of crisis factor ηt
ϵ -0.1230 Initial size of the crisis shock

the GFC period. Finally, Table VI reports the actual values of the three moments matched

in our SMM procedure.

Matched Moments from the GFC period

Table VI: This table reports the three moments that describe the crisis-specific output
dynamics observed during the GFC period.

Moment Data Model

GDP level at crisis trough (per GDP level in April 2008) 0.9516 0.9390
# of years since start to trough 1 1.25
# of years since start until pre-crisis level is reached 4.75 4.5

Our primary objective is to examine whether our proposed model yields realistic quan-

tities of risk and returns. We use the estimated parameters (from Table V) and combine

them with parameters describing the aggregate economy. We simulate 10,000 paths of 10

years of monthly risk premia and return volatilities. We plot these quantities in Figure 19.

The dash-dotted blue line characterizes what our model implies about asset prices during

the GFC period.

Our model’s forecasts align remarkably well with empirical observations. The implied

risk premium from Marfè and Pénasse (2022) and the equity premium lower bound from

Martin (2017) both evolve in a manner consistent with our model’s predictions. Both these
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(a) Risk Premium: Marfè and Pénasse (2022) (b) Risk Premium: Ian Martin’s lower bound

(c) Realized volatility

Figure 19: GFC period – Implied asset-pricing moments: This figure compares the
model predictions (presented ny blue dashed-dotted lines) with empirical observations (black solid lines).
We compare equity risk premia, measured using the Marfè and Pénasse (2022) index derived from stochastic
volatility and Martin (2017)’s lower bound on risk premium.

risk premium measures exhibit a distinct hump-shaped trend.

We quantify return volatility using realized volatility, calculated as the annualized stan-

dard deviation of the total daily squared returns (evaluated monthly). Once again, this

realized volatility shows a marked hump shape during the early stages of the GFC. Our

model also matches the intensity of return volatility, peaking at 40% during the crisis’s

deepest point.
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Note that in our model, the increase in the risk premia and return volatility is linked to the

increase in output volatility. Although it is difficult to measure the output volatility at high

enough frequency during a recession, we plot the squared growth of industrial production

in Figure 20. Here we see that same pattern - a hump shaped volatility. This pattern is

consistent with our model and an important driver of the joint dynamics of risk premia and

return volatility.

Figure 20: GFC period – Industrial Production Variance: The figure plots the squared
industrial production growth.

7. Conclusion

The onset of crises, such as the COVID-19 pandemic, often brings to light the emergence of

new risks. We document that asset prices don’t respond to recessions instantaneously, but

instead, react to negative crisis shocks in a gradual manner. Economic output also doesn’t

drop immediately when a new recession hits and recessions are often followed by a period of

abnormal growth, known as the ‘bounce-back’ effect.

Our proposed model is consistent with these empirical observations showing that asset

prices do not react instantaneously to new risks. Instead, there’s a noticeable delay, char-
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acterized by a hump-shaped pattern in expected excess returns. This delayed reaction isn’t

driven by biases but by the evolving expectations of output volatility.

This paper incorporates these output dynamics observed during crises into a structural

asset-pricing model. The model is built around the assumption that agent awareness of

new priced risks is reflected in conditional asset prices. We document that the officially

recognized NBER recessions are often preceded by agents paying attention to new key risk

terms, as is shown in Google Trend data. This activity starts well before the recession is

officially announced.

The most important implication of our model is that asset prices do not fall immediately

when agents become aware of this new risk. Instead, asset-pricing moments respond to each

crisis event with a delay, depending on when and how a series of negative output shocks

materializes. Risk premia gradually rise, as the new risk becomes priced when a new crisis

event starts and then steadily decrease to reach its steady state, which is when the new risk

becomes irrelevant.

In essence, our research underscores the intricate dance between the emergence of new

risks and the subsequent economic reactions. The findings hold significant implications for

stakeholders across the economic spectrum, emphasizing the need for a deeper understanding

of these dynamics in an ever-changing world filled with new risks.
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Proofs

Proposition 1

In equilibrium the real short rate, rt, is

rt = ρ + µŶ − σ2
Ŷ
+ κR (1 −

R̄
Rt

)

+κη (xt/ηt − 1) − σ2
ηη

2
t (λ − ηt)

2 − α(1 − λR
Rt

)(σ2
Ŷ
+ σ2

ηη
2
t (λ − ηt)

2)

and the market prices of risk for the normal shock is

θŶ ,t = σŶ (1 + α(1 −
λR
Rt

)) .

The market price of the shocks to η for s < t < τ where s is the time of a transition from the

good to the bad state and τ is the end of the recession is

θη,t = σηηt (λ − ηt) (1 + α(1 −
λR
Rt

))

and it is zero when st =H.

Proof. The risk-free rate and market prices of risk are derived from the dynamics of the

marginal utility given by

Mt = e−ρt
Rt

Yt

.

dMt

Mt

= − [ρ + µŶ − σ2
Ŷ
+ κR(1 − R̄/Rt) + κη(xt/ηt − 1) − σ2

ηη
2
t (λ − ηt)

2 − α(1 − λR
Rt

)(σ2
Ŷ
+ σ2

ηη
2
t (λ − ηt)

2)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rt

dt

− [σŶ (1 + α(1 −
λR
Rt

))]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

θŶ ,t

dZŶ ,t

− [σηηt (λ − ηt) (1 + α(1 −
λR
Rt

))]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

θη,t

dZη,t.
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Proposition 2

The equilibrium stock price is

St = Ytϕt

where the price-dividend ratio, ϕt, is

ϕt =
1

ρ
( R̄
Rt

+ ρ

ρ + κR
(1 − R̄

Rt

))

Proof.

St = Et∫
∞

t

Mτ

Mt

Yτdτ =
Yt

Rt

Et∫
∞

t
e−ρ(τ−t)Rτ .

The expected value of the inverse surplus ratio is orthogonal to the crisis state

Et(Rτ) = R̄ + (Rt − R̄)e−κR(τ−t),

which implies that the price of the price-to-dividend ratio of the aggregate market portfolio

is equal to

ϕt =
1

ρ
( R̄
Rt

+ ρ

ρ + κR
(1 − R̄

Rt

)) .

Proposition 3

In equilibrium, the expected stock market return is

µ̂R,t = rt + θŶ ,tσR,Ŷ ,t + θ̂η,tσR,η,t,

where

σR,Ŷ ,t = σŶ VR,t

and

σR,η,t = σηηt (λ − ηt)VR,t

with

VR,t = 1 +
⎛
⎝

κR
R̄
Rt

ρ + κR R̄Rt

⎞
⎠
α(1 − λR

Rt

) .

Proof. The terms σR,Ŷ ,t and σR,η,t are derived by applying the Ito’s lemma to obtain the

2



price dynamics and collecting all the noise terms.

dPt

Pt

= µR,tdt + σR,Ŷ ,tdZŶ ,t + σR,η,tdZη,t

3
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